Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (5): 601-609    DOI: 10.3724/SP.J.1037.2013.00558
Current Issue | Archive | Adv Search |
SOLIDIFICATION BEHAVIOR AND GRAIN SIZE OF SAND CASTING Mg-6Al-xZn ALLOYS
HOU Danhui1,2, LIANG Songmao3, CHEN Rongshi2(), DONG Chuang1
1 Institute of Material Science and Engineering, Dalian University of Techonlogy, Dalian 116024
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
3 Institute of Metallurgy, Clausthal University of Technology, Clausthal-Zellerfeld, Germany, 38678
Cite this article: 

HOU Danhui, LIANG Songmao, CHEN Rongshi, DONG Chuang. SOLIDIFICATION BEHAVIOR AND GRAIN SIZE OF SAND CASTING Mg-6Al-xZn ALLOYS. Acta Metall Sin, 2014, 50(5): 601-609.

Download:  HTML  PDF(9805KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The solidification behavior and microstructure evolution of sand cast Mg-6Al-xZn alloy (named as AZ6x alloys, x=0, 2, 4, 6, mass fraction, %) were characterized by two-thermocouple thermal analysis technology and SEM. The grain sizes of the alloys were quantitatively determined by EBSD technology. Thermodynamic calculations were applied in Pandat software for phase diagram calculation, Scheil model solidification simulation and growth restriction factor values (GRF or values). The results show that solidification of AZ6x alloys follows non-equilibrium solidification paths. Besides the γ-Mg17Al12 phase, which is the only secondary phase in AZ60 alloy, another Φ-Mg21(Al, Zn)17 phase appears in the as-cast microstructure of AZ62 to AZ66 alloys. With the increase of the Zn content, the amount of γ-Mg17Al12 phase decreases and while increase the amount of Φ-Mg21(Al, Zn)17 phase. Calculated equilibrium phase diagram shows that in the AZ60~AZ64 alloys both γ-Mg17Al12 phase and Φ-Mg21(Al, Zn)17 phase can be dissolved into α-Mg under proper heat treatment conditions. However, Φ-Mg21(Al, Zn)17 phase in AZ66 alloy can not be completely dissolved into a-Mg for any temperature. The results also indicate that higher Zn content alloys have higher values and smaller grain size, and lower solid fraction at dendrite coherency point (?sDCP). The relationship of values, grain size and ?sDCP has been also discussed.

Key words:  Mg-Al-Zn alloy      sand casting      grain size      growth restriction factor      solid fraction at dendrite coherency point     
Received:  05 September 2013     
ZTFLH:  TG146.2  
Fund: National Basic Research Program of China (No.2013CB632202) and National Natural Science Foundation of China ( Nos.51105350 and 51301173)
About author:  null

侯丹辉, 男, 1982年生, 博士生

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00558     OR     https://www.ams.org.cn/EN/Y2014/V50/I5/601

Alloy Al Zn Mn Mg
AZ60 5.74 - 0.22 Bal.
AZ62 5.79 1.90 0.21 Bal.
AZ64 5.69 3.70 0.24 Bal.
AZ66 5.82 5.66 0.28 Bal.
Table 1  Chemical composition of alloys(mass fraction / %)
Fig.1  Schematic diagram of two-thermocouple thermal analysis system (unit: mm) (a) and determination of dendritic coherency point through two-thermocouple thermal analysis (b) (TDCP—dendrite coherency temperature of the alloys, Tc—center thermocouple temperature, Tw—wall thermocouple temperature)
Fig.2  Thermal analysis results (a, c, e, g) and corresponding as-cast microstructures (b, d, f, h) of alloys AZ60 (a, b), AZ62 (c, d), AZ64 (e, f) and AZ66 (g, h) (Tonset—the temperature of start nucleation, Tpeak—the temperature of finish nucleation)
Fig.3  Comparison of the calculation vertical section of Mg-5.76Al -0.24Mn-xZn with phase transition temperature obtained by thermal analysis results of AZ6x alloys
Alloy Peak A TDCP Peak B Peak C
Tonset Tpeak Tonset Tpeak Tonset Tpeak
AZ60 617 614 610 439 436 - -
AZ62 610 608 604 407 404 - -
AZ64 602 599 593 389 385 361 359
AZ66 598 594 587 372 369 362 360
Table 2  Critical points temperature obtained from the cooling curves of the central thermocouple
Fig.4  Solidification curves of AZ6x alloys obtained by Scheil calculation and thermal analysis
Fig.5  EBSD maps of alloy AZ60 with average grain size of 557 μm (a), alloy AZ62 with average grain size of 275 μm (b), alloy AZ64 with average grain size of 271 μm (c) and alloy AZ66 with average grain size of 235 μm (d)
Fig.6  Thermal analysis results of alloys AZ60 (a), AZ62 (b) AZ64 (c) and AZ66 (d)
Fig.7  Effect of Zn content on the value of ?sDCP
Alloy Average grain size / μm Q fsDCP-Scheil / % fsDCP-TA / %
AZ60 557 21 36 35
AZ62 275 28 27 27
AZ64 271 34 31 26
AZ66 235 43 23 25
Table 3  Average grain size, grow restriction factor (Q value) and solid fraction at dendrite coherency point ?sDCP ofAZ6x alloys
Fig.8  Dendritic morphology diagrams with low (a) and high (b) solute contents
[1] Luo A A. J Magnesium Alloys, 2013; 1: 2
[2] Ma Y Q, Chen R S, Han E H. Mater Lett, 2007; 61: 2527
[3] Maxwell I, Hellawell A. Acta Metall, 1975; 23: 229
[4] Greer A L, Bunn A M, Tronche A, Evans P V, Bristow D J. Acta Mater, 2000; 48: 2823
[5] St John D H, Qian M, Easton M A, Cao P, Hildebrand Z. Metall Mater Trans, 2005; 36A: 1669
[6] Schmid-Fetzer R, Kozlov A. Acta Mater, 2011; 59: 6133
[7] Veldman N L M, Dahle A K, St John D H, Arnberg L. Metall Mater Trans, 2001; 32A: 147
[8] Liang S M, Chen R S, Blandin J J, Suery M, Han E H. Mater Sci Eng, 2008; A480: 365
[9] Arnberg L, Chai G, Backerud L. Mater Sci Eng, 1993; A173: 101
[10] Dahle A K, Arnberg L. Mater Sci Eng, 1997; A225: 38
[11] Chai G, Bäckerud L, RØlland T, Arnberg L. Metall Mater Trans, 1995; 26A: 965
[12] Malekan M, Shabestari S G. Metall Mater Trans, 2009; 40A: 3196
[13] Liang S M. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2009
(梁松茂. 中国科学院金属研究所博士学位论文, 沈阳, 2009)
[14] Bäckerud L, Krol E, Tamminen J. Solidification Characteristics of Aluminium Alloys. Vol.1, Oslo: Skan Aluminium, 1986: 65
[15] Chang H W, Qiu D, Taylor J A, Easton M A, Zhang M X. J Magnesium Alloys, 2013; 1: 115
[16] Kierkus W T, Solokowski J H. AFS Trans, 1999; 107: 161
[17] Cao W, Chen S L, Zhang F, Wu K, Yang Y, Chang Y A, Schmid-Fetzer R, Oates W A. Calphad, 2009; 33: 328
[18] Liang P, Tarfa T, Robinson J A, Wagner S, Ochin P, Harmelin M G, Seifert H J, Lukas H L, Aldinger F. Thermochim Acta, 1998; 314: 87
[19] Ohno M, Schmid-Fetzer R. Z Metallkd, 2005; 96: 857
[20] Ohno M, Mirković D, Schmid-Fetzer R. Mater Sci Eng, 2006; A421: 328
[21] Ohno M, Schmid-Fetzer R. Int J Mater Res, 2006; 97: 526
[22] Ohno M, Mirković D, Schmid-Fetzer R. Acta Mater, 2006; 54: 3883
[23] Thorvaldsen A, Aliravci C A. In: Proc International Symposium, Montreal, Canada: Metallurgical of CIM, 1992: 277
[24] Tamura Y, Yagi J, Haitani T, Motegi T, Kono N, Tamehiro H, Saito H. Mater Trans, 2003; 44: 552
[25] Liang S M, Ma Y Q, Chen R S, Han E H. Mater Trans, 2008; 49: 986
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[3] ZHANG Shouqing, HU Xiaofeng, DU Yubin, JIANG Haichang, PANG Huiyong, RONG Lijian. Cross-Section Effect of Ni-Cr-Mo-B Ultra-Heavy Steel Plate for Offshore Platform[J]. 金属学报, 2020, 56(9): 1227-1238.
[4] XU Zhanyi, SHA Yuhui, ZHANG Fang, ZHANG Huabing, LI Guobao, CHU Shuangjie, ZUO Liang. Orientation Selection Behavior During Secondary Recrystallization in Grain-Oriented Silicon Steel[J]. 金属学报, 2020, 56(8): 1067-1074.
[5] HE Shuwen, WANG Minghua, BAI Qin, XIA Shuang, ZHOU Bangxin. Effect of TaC Content on Microstructure and Mechanical Properties of WC-TiC-TaC-Co Cemented Carbide[J]. 金属学报, 2020, 56(7): 1015-1024.
[6] HUA Hanyu,XIE Jun,SHU Delong,HOU Guichen,Naicheng SHENG,YU Jinjiang,CUI Chuanyong,SUN Xiaofeng,ZHOU Yizhou. Influence of W Content on the Microstructure of Nickel Base Superalloy with High W Content[J]. 金属学报, 2020, 56(2): 161-170.
[7] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[8] Yi MEI, Quanlong SUN, Lihua YU, Chuanrong WANG, Huaqiang XIAO. Grain Size Prediction of Aluminum Alloy Dies Castings Based on GA-ELM[J]. 金属学报, 2017, 53(9): 1125-1132.
[9] Ming ZHANG, Guoquan LIU, Benfu HU. Effect of Microstructure Instability on Hot Plasticity During Thermomechanical Processing in PM Nickel-Based Superalloy[J]. 金属学报, 2017, 53(11): 1469-1477.
[10] Quan FU,Yuhui SHA,Zhenghua HE,Fan LEI,Fang ZHANG,Liang ZUO. Recrystallization Texture and Magnetostriction in Binary Fe81Ga19 Sheets[J]. 金属学报, 2017, 53(1): 90-96.
[11] Yongfeng SONG, Xiongbing LI, Haiping WU, Jiayong SI, Xiaoqin HAN. EFFECTS OF IN718 GRAIN SIZE ON ULTRASONICBACKSCATTING SIGNALS AND ITS NONDE-STRUCTIVE EVALUATION METHOD[J]. 金属学报, 2016, 52(3): 378-384.
[12] Jin LIU,Guohui ZHU. MODEL OF THE EFFECT OF GRAIN SIZE ON PLASTI-CITY IN ULTRA-FINE GRAIN SIZE STEELS[J]. 金属学报, 2015, 51(7): 777-783.
[13] Qing ZHAO,Shuang XIA,Bangxin ZHOU,Qin BAI,Cheng SU,Baoshun WANG,Zhigang CAI. EFFECT OF DEFORMATION AND THERMOMECHA- NICAL PROCESSING ON GRAIN BOUNDARY CHARACTER DISTRIBUTION OF ALLOY 825 TUBES[J]. 金属学报, 2015, 51(12): 1465-1471.
[14] LI Xiongbing, SONG Yongfeng, NI Peijun, LIU Feng. ULTRASONIC EVALUATION METHOD FOR GRAIN SIZE BASED ON MULTI-SCALE ATTENUATION[J]. 金属学报, 2015, 51(1): 121-128.
[15] WU Huibin, WU Fengjuan, YANG Shanwu, TANG Di. THE FORMATION MECHANISM OF AUSTENITE STRUCTURE WITH MICRO/SUB-MICROMETER BIMODAL GRAIN SIZE DISTRIBUTION[J]. 金属学报, 2014, 50(3): 269-274.
No Suggested Reading articles found!