Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (1): 121-128    DOI: 10.11900/0412.1961.2014.00369
Current Issue | Archive | Adv Search |
ULTRASONIC EVALUATION METHOD FOR GRAIN SIZE BASED ON MULTI-SCALE ATTENUATION
LI Xiongbing1,2(), SONG Yongfeng1, NI Peijun3, LIU Feng2
1 CAD/CAM Institute, Central South University, Changsha 410075
2 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083
3 The Ningbo Branch of Ordnance Science Institute of China, Ningbo 315103
Cite this article: 

LI Xiongbing, SONG Yongfeng, NI Peijun, LIU Feng. ULTRASONIC EVALUATION METHOD FOR GRAIN SIZE BASED ON MULTI-SCALE ATTENUATION. Acta Metall Sin, 2015, 51(1): 121-128.

Download:  HTML  PDF(3629KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To solve such problems as sensitivity to noise and low accuracy of grain size evaluation using traditional ultrasonic time-domain attenuation method, an ultrasonic nondestructive evaluation model based on multi-scale attenuation coefficient was proposed. The distribution of time-scale of ultrasonic energy was obtained by means of wavelet transformation, then to calculate the distribution of attenuation coefficient with scale, and to make a comprehensive analysis of attenuation characteristics of various scales. After the weighted multi-scale ultrasonic attenuation coefficient was defined, a multi-scale ultrasonic attenuation evaluation model was established on the basis of combination of optimal dimension and normalized weight distribution strategy designed by particle swarm optimization. 304 stainless steel was used in the test. The distribution of attenuation coefficient with scale shows that ultrasonic wave of small scales attenuates fast, presenting the frequency characteristics of ultrasonic attenuation among high scattering materials. Following increase of the sample grain size, ultrasonic attenuation of all scales was intensified significantly. Test results show that the sound velocity method, the traditional evaluation method and the proposed method have maximum systematic errors of +12.57%, +5.85% and -1.33%, respectively. With these 3 methods, evaluation results of the sample with a mean grain size of 103.5 mm measured by metallographic method are (110.4±7.8), (98.2±6.6) and (101.7±3.9) mm, respectively, showing that the presented method can not only reduce the systemic error, but also can effectively control the random error by constant Q filtering properties of wavelet transformation. This model can be extended to grain size evaluation of other metals.

Key words:  grain size      ultrasonic nondestructive evaluation      multi-scale analysis      attenuation coefficient     
ZTFLH:  TG115.21  
  TG115.28  
Fund: Supported by National Natural Science Foundation of China (Nos.61271356, 51205031 and 51105045), High Technology Research and Development Program of China (No.2012AA03A514), Natural Science Foundation of Hunan Province (No.14JJ2002) and China Postdoctoral Science Foundation (No.2014M562126)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00369     OR     https://www.ams.org.cn/EN/Y2015/V51/I1/121

Sample
No.
Heating temperature
Holding time / h Cooling method Sample thickness / mm D / mm E / %
1 1080 2 W.Q. 14.621 72.4 2.23
2 1080 4 W.Q. 14.236 82.5 3.06
3 1080 6 W.Q. 13.762 90.6 4.49
4 1080 8 W.Q. 13.546 105.6 4.06
5 1180 6 W.Q. 13.447 135.4 1.65
6 1180 8 W.Q. 12.847 141.9 2.39
Table 1  Heat treatment specification, thickness and mean grain size of the samples
Fig.1  Schematic diagram of the ultrasonic signal acquisition system
Fig.2  OM images of the samples No.1 (a), No.2 (b), No.3 (c), No.4 (d), No.5 (e) and No.6 (f)
Fig.3  One original ultrasonic signal of the sample No. 2 (TS1—threshold No.1 for the front-wall echo, TS2 —threshold No.2 for the first back-wall echo)
Fig.4  Evaluation model of traditional attenuation method
Fig.5  Time-scale distribution of sample No.2

(a) front-wall echo obtained by TS1

(b) first back-wall echo obtained by TS2

Fig.6  Mean attenuation coefficient spectrogram of the samples
Fig.7  Evaluation model based on multi-scale attenuation
Fig.8  Comparison of evaluation results and error bands using different methods (a) traditional velocity method (b) traditional attenuation method (c) multi-scale attenuation method
Sample
No.
D v / mm E v / % D t / mm E t / % D m / mm E m / %
1 81.5±5.7 12.57 72.9±2.9 0.69 72.7±1.9 0.41
2 83.6±8.5 1.33 81.2±3.5 -1.58 82.3±2.8 -0.24
3 85.5±10.6 -5.63 95.9±4.1 5.85 91.7±4.0 1.21
4 98.2±8.3 -7.01 102.0±4.5 -3.41 104.2±4.4 -1.33
5 135.7±9.0 0.22 131.5±5.7 -2.88 134.3±2.7 -0.81
6 143.9±10.1 1.41 145.0±6.5 2.18 143.3±3.5 0.99
Table 2  Performance analysis of different methods
  
[1] Prasad K S, Rao C S, Rao D N. Acta Metall Sin (Engl Lett), 2012; 25: 179
[2] Wang S H, Liu Z Y, Wang G D. Acta Metall Sin, 2009; 45: 61
(王书晗, 刘振宇, 王国栋. 金属学报, 2009; 45: 61)
[3] Zhao Y, Chen Z, Long J, Yang T. Acta Metall Sin (Engl Lett), 2014; 27: 81
[4] Lehto P, Remes H, Saukkonen T, Hänninen H, Romanoff J. Mater Sci Eng, 2014; A592: 28
[5] Andrés R, Galvis E, Hormaza W. Eng Fail Anal, 2011; 18: 1791
[6] Voort G F V. Prakt Metall, 2013; 50: 239
[7] Schwartz A J, Kumar M, Adams B L, Field D P. Electron Backscatter Diffraction in Materials Science. New York: Springer, 2009: 1
[8] Sabbagh E H, Sabbagh H A, Murphy R K, Sheila-Vadde A, Blodgett M P, Knopp J, Aldrin J C. In: Thompson D O, Chimenti D E eds., Review of Progress in Quantitative Nondestructive Evaluation, New York: American Institute of Physics, 2009: 742
[9] Guo Y, Thompson R B, Margetan F J. In: Thompson D O, Chimenti D E, eds., Review of Progress in Quantitative Nondestructive Evaluation, New York: American Institute of Physics, 2003: 1347
[10] Panetta P D, Bland L G, Tracy M, Hassan W. In: The Minerals, Metals & Materials Society (TMS) ed., TMS2014 Annual Meeting Supplemental Proceedings, Hoboken: John Wiley & Sons Inc, 2014: 721
[11] Ünal R, Sarpün I H, Yalım H A, Erol A, Özdemir T, Tuncel S. Mater Charact, 2006; 56: 241
[12] Zuev L B, Semukhin B S, Zarikovskaya N V. Int J Solids Struct, 2003; 40: 941
[13] Laux D, Cros B, Despaux G, Baron D. J Nucl Mater, 2002; 300: 192
[14] Aghaie-Khafri M, Honarvar F, Zanganeh S. J Nondestruct Eval, 2012; 31: 191
[15] Őzkan V, Sarpünb I H. Acta Phys Pol, 2012; 121A: 184
[16] Zeng F, Agnew S R, Raeisinia B, Myneni G R. J Nondestruct Eval, 2010; 29: 93
[17] Kumar A, Jayakumar T, Palanichamy P, Raj B. Scr Mater, 1999; 40: 333
[18] Sharma G K, Kumar A, Babu Rao C, Jayakumar T, Raj B. NDT&E Int, 2013; 53: 1
[19] Dong J K. Heat Treat Met, 2011; 36: 133
(董加坤. 金属热处理, 2011; 36: 133)
[20] Eberhart R C, Shi Y. In: Zalzala A ed., IEEE Proceedings of the Congress Evolutionary Computation, New York: IEEE, 2000: 84
[21] Le T P, Argoul P. J Sound Vib, 2004; 277: 73
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[3] ZHANG Shouqing, HU Xiaofeng, DU Yubin, JIANG Haichang, PANG Huiyong, RONG Lijian. Cross-Section Effect of Ni-Cr-Mo-B Ultra-Heavy Steel Plate for Offshore Platform[J]. 金属学报, 2020, 56(9): 1227-1238.
[4] XU Zhanyi, SHA Yuhui, ZHANG Fang, ZHANG Huabing, LI Guobao, CHU Shuangjie, ZUO Liang. Orientation Selection Behavior During Secondary Recrystallization in Grain-Oriented Silicon Steel[J]. 金属学报, 2020, 56(8): 1067-1074.
[5] HE Shuwen, WANG Minghua, BAI Qin, XIA Shuang, ZHOU Bangxin. Effect of TaC Content on Microstructure and Mechanical Properties of WC-TiC-TaC-Co Cemented Carbide[J]. 金属学报, 2020, 56(7): 1015-1024.
[6] HUA Hanyu,XIE Jun,SHU Delong,HOU Guichen,Naicheng SHENG,YU Jinjiang,CUI Chuanyong,SUN Xiaofeng,ZHOU Yizhou. Influence of W Content on the Microstructure of Nickel Base Superalloy with High W Content[J]. 金属学报, 2020, 56(2): 161-170.
[7] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[8] Yi MEI, Quanlong SUN, Lihua YU, Chuanrong WANG, Huaqiang XIAO. Grain Size Prediction of Aluminum Alloy Dies Castings Based on GA-ELM[J]. 金属学报, 2017, 53(9): 1125-1132.
[9] Ming ZHANG, Guoquan LIU, Benfu HU. Effect of Microstructure Instability on Hot Plasticity During Thermomechanical Processing in PM Nickel-Based Superalloy[J]. 金属学报, 2017, 53(11): 1469-1477.
[10] Quan FU,Yuhui SHA,Zhenghua HE,Fan LEI,Fang ZHANG,Liang ZUO. Recrystallization Texture and Magnetostriction in Binary Fe81Ga19 Sheets[J]. 金属学报, 2017, 53(1): 90-96.
[11] Yongfeng SONG, Xiongbing LI, Haiping WU, Jiayong SI, Xiaoqin HAN. EFFECTS OF IN718 GRAIN SIZE ON ULTRASONICBACKSCATTING SIGNALS AND ITS NONDE-STRUCTIVE EVALUATION METHOD[J]. 金属学报, 2016, 52(3): 378-384.
[12] Jin LIU,Guohui ZHU. MODEL OF THE EFFECT OF GRAIN SIZE ON PLASTI-CITY IN ULTRA-FINE GRAIN SIZE STEELS[J]. 金属学报, 2015, 51(7): 777-783.
[13] Qing ZHAO,Shuang XIA,Bangxin ZHOU,Qin BAI,Cheng SU,Baoshun WANG,Zhigang CAI. EFFECT OF DEFORMATION AND THERMOMECHA- NICAL PROCESSING ON GRAIN BOUNDARY CHARACTER DISTRIBUTION OF ALLOY 825 TUBES[J]. 金属学报, 2015, 51(12): 1465-1471.
[14] HOU Danhui, LIANG Songmao, CHEN Rongshi, DONG Chuang. SOLIDIFICATION BEHAVIOR AND GRAIN SIZE OF SAND CASTING Mg-6Al-xZn ALLOYS[J]. 金属学报, 2014, 50(5): 601-609.
[15] WU Huibin, WU Fengjuan, YANG Shanwu, TANG Di. THE FORMATION MECHANISM OF AUSTENITE STRUCTURE WITH MICRO/SUB-MICROMETER BIMODAL GRAIN SIZE DISTRIBUTION[J]. 金属学报, 2014, 50(3): 269-274.
No Suggested Reading articles found!