Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (8): 834-838     DOI:
Research Articles Current Issue | Archive | Adv Search |
Numerical Simulation for the Interfacial Behavior of Steel and Slag in a Slab Continuous Casting Mold with High Casting Speed
Na CAO
东北大学材料与冶金学院
Cite this article: 

Na CAO. Numerical Simulation for the Interfacial Behavior of Steel and Slag in a Slab Continuous Casting Mold with High Casting Speed. Acta Metall Sin, 2007, 43(8): 834-838 .

Download:  PDF(482KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The entrainment of steel and slag interface has a great effect on casting process and the product quality. The research described the interfacial behavior between fluid steel and molten slag layer in a slab continuous casting mold with high casting speed by numerical simulation method. Good agreement between the mathematical model and experimental observation was obtained. The influences of casting speed, mold width, port angle, submergence depth of SEN and molten slag viscosity on interfacial behavior were investigated. For a given casting speed, increasing the penetration depth and downward port degree can effectively restrain interfacial oscillations. Molten slag viscosity has hardly influence on interfacial profile of steel and slag. Steel-slag interface velocity decreases with increasing molten slag viscosity.
Key words:  continuous casting with high speed      mold      steel-slag interfacial behavior      numerical simulation      
Received:  22 December 2006     
ZTFLH:  TF777.1  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I8/834

[1]Ilegbusi O J,Szekely J.ISIJ Int,1994;34:943
[2]Panaras G A,Theodorakakos A,Bergeles G.Metall Mater Trans,1998;29B:1117
[3]Theodorakakos A,Bergeles G.Metall Mater Trans,1998; 29B:1321
[4]Tan L J,Shen H F,Liu B C,Liu X,Xu R J,Li Y Q.Acts Metall Sin,2003;39:435 (谭利坚,沈厚发,柳百成,刘晓,徐荣军,李永全.金属学报,2003:39:435)
[5]Anagnostopoulos J,Bergeles G.Metall Mater Trans, 1999;30B:1095
[6]Dash S K,Mondal S S,Ajmani S K.Int J Num Methods Heat Fluid Flow,2004;14:606
[7]Gupta D,Lahiri A K.Metall Mater Trans,1994;25B:227
[8]Lei H,Xu H H,Zhu M Y,Gan Y,Liu X,Ni M S,Liu J Q.Iron Steel,1999;34(8):20 (雷洪,许海虹,朱苗勇,干勇,刘新,倪满森,刘家奇.钢铁,1999;34(8):20)
[9]Iguchi M,Yoshida J,Shimizu T,Mizuno Y.ISIJ Int,2000; 40:685
[10]Huang X,Thomas B G.Can Metall Q,1998;37:197
[11]McDavid R M,Thomas B G.Metall Mater Trans,1996; 27B:672
[12]Hirt C W,Nichols B D.J Comput Phys,1981;39:201
[13]Obbink O.PhD Dissertation,University of London,1997
[14]Brackbill J U,Kothe D B,Zemach C.J Comput Phys, 1992;100:335
[15]Launder B E,Spalding D B.Comput Method Appl Mech Eng,1974;3:269
[16]Li B Z.Refractories,2006;40:306 (李博知.耐火材料,2006;40:306)s
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[5] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[6] WANG Chunhui, YANG Guangyu, ALIMASI Aredake, LI Xiaogang, JIE Wanqi. Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy[J]. 金属学报, 2022, 58(7): 921-931.
[7] LIU Zhongqiu, LI Baokuan, XIAO Lijun, GAN Yong. Modeling Progress of High-Temperature Melt Multiphase Flow in Continuous Casting Mold[J]. 金属学报, 2022, 58(10): 1236-1252.
[8] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[9] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[10] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[11] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[12] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
[13] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[14] Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG,Dean DENG. Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model[J]. 金属学报, 2019, 55(8): 1058-1066.
[15] Ting ZHANG,Yuhong ZHAO,Liwen CHEN,Jianquan LIANG,Muxi LI,Hua HOU. Graphene Nanoplatelets Reinforced Magnesium Matrix Composites Fabricated by Thixomolding[J]. 金属学报, 2019, 55(5): 638-646.
No Suggested Reading articles found!