Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (8): 797-802     DOI:
Research Articles Current Issue | Archive | Adv Search |
(Fe-B-Y)-based quinary bulk metallic glasses designed using cluster line criterion
CHEN Wei-Rong;;;Qingyu Zhang;
大连理工大学;大连大学
Cite this article: 

CHEN Wei-Rong; Qingyu Zhang. (Fe-B-Y)-based quinary bulk metallic glasses designed using cluster line criterion. Acta Metall Sin, 2007, 43(8): 797-802 .

Download:  PDF(548KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  This work investigates the glass formation of Fe-B-Y-based multicomponent alloys designed using a cluster line approach. Cluster lines Fe8B3-Y, Fe8B2-Y, Fe83B17-Y, Fe6B-Y and Fe9B-Y intersect with cluster line Fe12Y-B at five compositions in the Fe-B-Y phase diagram that are taken as basic compositions. Further minor alloying by additions of 2 at.% Nb and 2 at.% M (M=Ti, Hf, Ta, Mo, Ni, and Sn) was designed and alloy rods were synthesized with a diameter of 3mm by suction-casting in copper mold. A. Considering mass loss of B and Y during arc melting, the ingots were all weighted after each melting and the final compositions were revised accordingly. When M=Ti, Hf, Ta and Mo, the quinary alloys form BMGs at compositions close to the Fe8B3-Y cluster line. This signifies that the close-packed Archimedes octahedral antiprism Fe8B3 is the basic atomic cluster that favors glass formation. The best glass-forming composition is (Fe69.9B24.6Y5.5)96Nb2Ti2 with Tg=944K, Tx=997K, Trg=0.666. When M=Ni and Sn, no glass formation was observed.
Key words:  cluster line      Fe-based bulk metallic glass      composition design      
Received:  08 December 2006     
ZTFLH:  TG139.8  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I8/797

[1]Inoue A,Shen B L,Takeuchi A.Mater Trans,2006;47: 1275
[2]Shen B L,Akiba M,Inoue A.Appl Phys Lett,2006;88: 131907
[3]Inoue A,Shinohara Y,Gook J S.Mater Trans JIM,1995; 36:1427
[4]Inoue A,Zhang T,Takeuchi A.Appl Phys Lett,1997;71: 464
[5]Inoue A,Chen B.Mater Trans,2002;43:766
[6]Inoue A,Nishiyama N,Matsuda T.Mater Trans JIM, 1996;37:181
[7]Inoue A,Zhang T,Mosumoto T.Mater Trans JIM,1990; 31:177
[8]Inoue A,Zhang W.Mater Trans,2002;43:2921
[9]Lin C Y,Tien H Y,Chin T S.Appl Phys Lett,2005;86: 162501
[10]Wang Y M,Zhang X F,Qiang J B,Wang Q,Wang D H, Li D J,Shek C H,Dong C.Scr Mater,2004;50:829
[11]Zhang X F,Wang Y M,Qiang J B,Wang Q,Wang D H, Li D J,Shek C H,Dong C.Intermetallics,2004;12:1275
[12]Wang Q,Wang Y M,Qiang J B,Zhang X F,Shek C H, Dong C.Intermetallics,2004;12:1229
[13]Wang Q,Qiang J B,Wang Y M,Xia J H,Lin Z,Zhang X F,Dong C. Acta Phys Sin,2006;55:378 (王清,羌建兵,王英敏,夏俊海,林哲,张新房,董闯.物理学报,2006;55:378)
[14]Wu J,Wang Q,Qiang J B,Chen F,Dong C,Wang Y M, Shek C H.J Mater Res,2007:22:573
[15]Dong C,Qiang J B,Wang Y M,Jiang N,Wu J,Thiel P. Philos Mag,2006;86:263
[16]Inoue A,Takeuchi A,shen B.Mater Trans.2001;42:970
[17]Xia J H,Qiang J B,Wang Y M,Wang Q,Dong C.Appl Phys Lett,2006;88:101907
[18]Inoue A.Mater Trans JIM,1995;36:866
[19]Inoue A.Mater Sci Eng,2001;A304-306:1
[20]Miracle D B,Senkov O N,Sanders W S,Kending K L. Mater Sci Eng,2004:A375-377:150
[21]Miracle D B.J Non-Cryst Solids,2004;342:89
[22]Miracle D B,Sanders W S.Philos Mag,2003;83:2409
[1] ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. 金属学报, 2023, 59(12): 1581-1589.
[2] HE Xingqun, FU Huadong, ZHANG Hongtao, FANG Jiheng, XIE Ming, XIE Jianxin. Machine Learning Aided Rapid Discovery of High Perfor-mance Silver Alloy Electrical Contact Materials[J]. 金属学报, 2022, 58(6): 816-826.
[3] WANG Donghong, SUN Feng, SHU Da, CHEN Jingyang, XIAO Chengbo, SUN Baode. Data-Driven Design of Cast Nickel-Based Superalloy and Precision Forming of Complex Castings[J]. 金属学报, 2022, 58(1): 89-102.
[4] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[5] WU Jing,LIU Yongchang,LI Chong,WU Yuting,XIA Xingchuan,LI Huijun. Recent Progress of Microstructure Evolution and Performance of Multiphase Ni3Al-Based Intermetallic Alloy with High Fe and Cr Contents[J]. 金属学报, 2020, 56(1): 21-35.
[6] Yaoxiang GENG,Xin LIN,Jianbing QIANG,Yingmin WANG,Chuang DONG. Dual-Cluster Characteristic and Composition Optimization of Finemet Soft Magnetic Nanocrystalline Alloys[J]. 金属学报, 2017, 53(7): 833-841.
[7] Yaoxiang GENG,Zhijie ZHANG,Yingmin WANG,Jianbing QIANG,Chuang DONG,Haibin WANG,Ojied TEGUS. Structure-Property Correlation of High Fe-ContentFe-B-Si-Hf Bulk Glassy Alloys[J]. 金属学报, 2017, 53(3): 369-375.
[8] ZHOU Xuefeng, CHEN Guang, YAN Shitan, ZHENG Gong, LI Pei, CHEN Feng. EXPLORATION AND RESEARCH OF A NEW Re-FREE Ni-BASED SINGLE CRYSTAL SUPERALLOY[J]. 金属学报, 2013, 49(11): 1467-1472.
[9] WANG Qing ZHA Qianfeng LIU Enxue DONG Chuang WANG Xuejun TAN Chaoxin JI Chunjun. COMPOSITION DESIGN OF HIGH–STRENGTH MARTENSITIC PRECIPITATION HARDENING STAINLESS STEELS BASED ON A CLUSTER MODEL[J]. 金属学报, 2012, 48(10): 1201-1206.
[10] YUAN Liang QIANG Jianbing PANG Chang WANG Yinmin WANG Qing DONG Chuang. COMPOSITION DESIGN OF Ni–Nb–(Zr, Ta, Ag) TERNARY BULK METALLIC GLASSES BASED ON CLUSTER FORMULA OF Ni–Nb EUTECTIC[J]. 金属学报, 2011, 47(8): 1003-1008.
[11] MA Rentao HAO Chuanpu WANG Qing REN Mingfa WANG Yingmin DONG Chuang. CLUSTER-PLUS-GLUE-ATOM MODEL AND COMPOSITION DESIGN OF BCC Ti-Mo-Nb-Zr SOLID SOLUTION ALLOYS WITH LOW YOUNG'S MODULUS[J]. 金属学报, 2010, 46(9): 1034-1040.
[12] . Quasicrystals in Al-Cu-Ni-Fe Quaternary System[J]. 金属学报, 2007, 43(4): 374-378 .
[13] LI Hongxiang; YI Seonghoon; ZHANG Xinfang; WANG Xiaodong. Preparation and Compression Properties of Fe--C--Si--B--P--Cr--Mo--Al Bulk Metallic Glass[J]. 金属学报, 2006, 42(7): 777-780 .
No Suggested Reading articles found!