Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (6): 625-630     DOI:
Research Articles Current Issue | Archive | Adv Search |
Cite this article: 

. . Acta Metall Sin, 2007, 43(6): 625-630 .

Download:  PDF(240KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Molten magnesium has been oxidized in the atmospheres of air containing HFC-134a in the temperature range of 660℃~800℃. The oxidation kinetic curves of molten magnesium have been measured by the weight gain method. The oxidation products have been characterized by XRD and EDS. The results show that the oxidation kinetics of molten magnesium are greatly influenced by the concentration of HFC-134a and temperature. The curve of oxidation weight gain against time is linear and the oxidation film consists mainly of MgO when the concentration of HFC-134a in air is low. The oxidation follows parabolic rate law and the film consists mainly of MgF2 when the concentration of HFC-134a in air is high. An oxidation mechanism of molten magnesium in air containing HFC-134a has been proposed to account for the experimental results.
Key words:  magnesium      oxidation kinetics      mechanism      HFC-134      
Received:  30 October 2006     
ZTFLH:  TG146.2  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I6/625

[1]Erickson S C,King J F,Mellerud T.Found Manage Tech- nol,1998;126:38
[2]Ricketts N J,Cashion S P.Magnesium Technology 2001. ??Warrendale,PA:TMS,2001:31
[3]Ricketts N J,Cashion S P,Bailey R.Proc 1st Int Light Met Technol Conf,Brisbane,Australia:CAST,2003:275
[4]Lyon P,Rogers P D,King J F,Cashion S P,Ricketts N J.In:Kaplan H ed.,Magnesium Technology 2003,War- rendale,PA:TMS,2003:11
[5]Won H,Jae E L,Young J K.Mater Sci Forum,2005; 475-479:2543
[6]Pettersen G,Ovrelid E,Tranell G,Fenstad J,Gjestland H.Mater Sci Eng,2002;A332:285
[7]Liu X L,Xiong S M.Rare Met Mater Eng,2006;35:1396 (刘晓龙,熊守美.稀有金属材料与工程,2006;35:1396)
[8]Huang Z Q,Zeng Y W,Mao M X.Spec Cast Nonferrous Alloys,2006;26:532 (黄志强,曾一文,毛明现.特种铸造及有色合金,2006;26: 532)
[9]Salas O,Vlach K C,Levi C G,Jayaram V.J Mater Res, 1991;6:1964
[10]Zeng X,Wang Q,Lu Y,Ding W,Zhu Y,Zhai C,Lu C, Xu X.Mater Sci Eng,2001;A301:154
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[4] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[8] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[9] LI Qian, LIU Kai, ZHAO Tianliang. Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress[J]. 金属学报, 2023, 59(6): 829-840.
[10] XIONG Tianying, WANG Jiqiang. Research Progress of Cold Spray in Institute of Metal Research, Chinese Academy of Sciences[J]. 金属学报, 2023, 59(4): 537-546.
[11] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[12] CAO Shuting, ZHANG Shaohua, ZHANG Jian. Combustion Behavior of GH4061 Alloy in High Pressure and Oxygen-Enriched Atmosphere[J]. 金属学报, 2023, 59(4): 547-555.
[13] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[14] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[15] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
No Suggested Reading articles found!