Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (5): 534-538     DOI:
Research Articles Current Issue | Archive | Adv Search |
EXPERIMENTAL RESEARCH INTO THE FORMABILITY OF AZ31B EXTRUDED TUBE
Zhu-Bin He;
哈尔滨工业大学
Cite this article: 

Zhu-Bin He. EXPERIMENTAL RESEARCH INTO THE FORMABILITY OF AZ31B EXTRUDED TUBE. Acta Metall Sin, 2007, 43(5): 534-538 .

Download:  PDF(278KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The formability of AZ31B magnesium alloy extruded tube was investigated by tension test and hydrobulging test. The result show that with the increase of temperature, the tension property along the extrusion direction increased significantly, while the maximum hydrobulging ratio did not change accordingly. The anisotropy induced by extrusion process is one of the main reasons for the difference of properties in axial direction and hoop direction. The extrusion weld line became the position where fracture will first occur, especially at elevated temperature. This acts as another important factor that decreases the formability of the extruded tube during hydrobulging.
Key words:  magnesium alloy      extruded tube      internal high pressure forming      
Received:  27 July 2006     
ZTFLH:  TG306  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I5/534

[1] Merklein M, Geiger M. J Mater Process Technol, 2002; 125-126: 532
[2] Novotny S, Geiger M. J Mater Process Technol, 2003; 138: 594
[3] Imaninejad M, Subbash G, Loukus A. J Mater Process Technol, 2004; 147: 247
[4] Groche P, Breitenbach G. In: Siegert K, ed., Proc Hydro-forming of Tubes, Extrusions and Sheet Metals, Frankfult: MAT Information, 2005: 219
[5] Banabic D. Formability of Metallic Materials, Plastic Anisotropy, Formability Testing and Forming Limits. Berlin: Springer, 2000: 92
[6] Sokolowski T, Gerke K, Ahmetoglu M, Altan T. J Mater Process Technol, 2000; 98: 34
[7] Huang Y M, Yang M T. J Key Eng Mater, 2003; 233-236: 311
[8] Huang Y M. In: Manabe K, ed., Proc Tubehydro, Nagoya, Japan: Sigma Publishing, 2003: 105
[9] Huang J C. Dissertation for the Doctor Degree, National Sun Yat-Sen University, Taibei, 2004 (黄建超.国立中山大学材料科学研究所博士学位论文,台北, 2004)
[10] Wu S C. Superplastic Deformation Theory of Metals. Beijing: National Defense Industry Press, 1997: 18 (吴诗惇.金属超塑性变形理论.北京;国防工业出版社,1997: 18)
[1] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[2] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[3] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[4] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[5] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[6] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[7] WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1429-1437.
[8] PAN Fusheng, JIANG Bin. Development and Application of Plastic Processing Technologies of Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1362-1379.
[9] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[10] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[11] Rongchang ZENG, Lanyue CUI, Wei KE. Biomedical Magnesium Alloys: Composition, Microstructure and Corrosion[J]. 金属学报, 2018, 54(9): 1215-1235.
[12] Yanyu LIU, Pingli MAO, Zheng LIU, Feng WANG, Zhi WANG. Theoretical Calculation of Schmid Factor and Its Application Under High Strain Rate Deformation in Magnesium Alloys[J]. 金属学报, 2018, 54(6): 950-958.
[13] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[14] Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates[J]. 金属学报, 2018, 54(4): 557-565.
[15] Shoumei XIONG, Jinglian DU, Zhipeng GUO, Manhong YANG, Mengwu WU, Cheng BI, Yongyou CAO. Characterization and Modeling Study on Interfacial Heat Transfer Behavior and Solidified Microstructure of Die Cast Magnesium Alloys[J]. 金属学报, 2018, 54(2): 174-192.
No Suggested Reading articles found!