Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (4): 367-373     DOI:
Research Articles Current Issue | Archive | Adv Search |
Modeling of Dendrite Growth for Mg Alloy with Compact Hexagonal Crystal Structure
Zhiyong LIU;;
Cite this article: 

Zhiyong LIU. Modeling of Dendrite Growth for Mg Alloy with Compact Hexagonal Crystal Structure. Acta Metall Sin, 2007, 43(4): 367-373 .

Download:  PDF(778KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Magnesium alloy is getting more and more worldwide application. Therefore, microstructure simulation of Mg alloy during solidification process not only has important academic value, but also can meet the active demand for development of industry. Based on the crystallographic structure and preferential growth direction of Mg alloy, physical model of grain growth for compact hexagonal structure was founded and a new stochastic simulation method named virtual core growth calculation model was proposed in this paper. Considering dendrite growth kinetics, anisotropy of grain growth and secondary dendrite arm coarsening, the present model adopted dendrite shape functions to reveal the evolution of primary and secondary dendrite arms. A coordinate transformation technique was introduced to calculate the cell capture of growing dendrites with arbitrary orientations rapidly and accurately. Coupled with the calculation of microscopic solute concentration, the simulation can get more accurate growth morphology of dendrites and solute distribution. Finally, applications to the Mg-Al based alloys are presented describing directional as well as equiaxed dendritic growth, which indicated the high theoretic and practical value of proposed models.
Key words:  Modeling      Magnesium alloy      Dendrite growth      Compact hexagonal      
Received:  23 August 2006     
ZTFLH:  TG244  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I4/367

[1]Wu S S,Li D N,Mao Y W.Foundry,2002;51:583 (吴树森,李东南,毛有武.铸造,2002;51:583)
[2]Beltran-Sanchez L,Stefanescu D M.Metall Mater Trans, 2004;35A:2471
[3]Zhu M F,Dai T,Li C Y,Hong C P.Sci Chin,2005;35E: 673 (朱鸣芳,戴挺,李成允,洪俊杓.中国科学,2005;35E: 673)
[4]Eiken J,Bottger B,Steinbach I.In:Gandin C A,Bel- let M,eds.,Modeling of Casting,Welding and Advanced Solidification Processes-Ⅺ,Warrendale:TMS,2006:489
[5]Liu Z Y,Xu Q Y,Liu B C.Mater Sci Forum,in press
[6]Dahle A K,Lee Y C,Nave M D,Schaffer P L,StJohn D H.J Light Met,2001;1:61
[7]Steinbach I,Beckermann C,Kauerauf B,Li Q,Guo J. Acta Mater,1999;47:971
[8]Li Q,Beckermann C.Phys Rev,1998;57E:3176
[9]Xu Q Y,Feng W M,Liu B C.J Mater Sci Technol,2003; ??19:391
[10]Kattamis T Z,Coughlin J C,Flemings M C.Trans Met Soc AIME,1967;239:1504
[11]Chang G W,Wang J Z.Crystal Growth and Control in the Solidification of Metal.Beijing:Metallurgical Indus- try Press,2002:109 (常国威,王建中.金属凝固过程中的晶体生长与控制.北京:冶金工业出版社,2002:109)
[12]Thévoz P,Desbiolles J L,Rappaz M.Metall Trans,1989; 20A:311
[13]Kurz W,Giovanola B,Trivedi R.Acta Metall,1986;34: 823
[14]Xu Q Y,Feng W M,Liu B C.Acta Metall Sin,2002;38: 799 (许庆彦,冯伟明,柳百成.金属学报,2002;38:799)
[15]Goldstein H.Classical Mechanics.Reading Mass,USA: Addison-Wesley Pub.Co.Inc.,1959:107
[16]Zare R N.Angular Momentum.New York:John Wiley & Sons,1988:100
[1] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[2] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[3] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[4] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[5] CHEN Huabin, CHEN Shanben. Key Information Perception and Control Strategy of Intellignet Welding Under Complex Scene[J]. 金属学报, 2022, 58(4): 541-550.
[6] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[7] LIU Zhongqiu, LI Baokuan, XIAO Lijun, GAN Yong. Modeling Progress of High-Temperature Melt Multiphase Flow in Continuous Casting Mold[J]. 金属学报, 2022, 58(10): 1236-1252.
[8] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[9] YANG Yong, HE Quanfeng. Lattice Distortion in High-Entropy Alloys[J]. 金属学报, 2021, 57(4): 385-392.
[10] PAN Fusheng, JIANG Bin. Development and Application of Plastic Processing Technologies of Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1362-1379.
[11] WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1429-1437.
[12] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[13] LIU Feng, WANG Tianle. Precipitation Modeling via the Synergy of Thermodynamics and Kinetics[J]. 金属学报, 2021, 57(1): 55-70.
[14] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[15] JIN Xuejun,GONG Yu,HAN Xianhong,DU Hao,DING Wei,ZHU Bin,ZHANG Yisheng,FENG Yi,MA Mingtu,LIANG Bin,ZHAO Yan,LI Yong,ZHENG Jinghua,SHI Zhusheng. A Review of Current State and Prospect of the Manufacturing and Application of Advanced Hot Stamping Automobile Steels[J]. 金属学报, 2020, 56(4): 411-428.
No Suggested Reading articles found!