Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (4): 363-366     DOI:
Research Articles Current Issue | Archive | Adv Search |
SCREW METHOD FOR MEASURING STRAIN DISTRIBUTION IN METAL PLASTIC DEFORMATION BODY
;;;;
哈尔滨工业大学
Cite this article: 

. SCREW METHOD FOR MEASURING STRAIN DISTRIBUTION IN METAL PLASTIC DEFORMATION BODY. Acta Metall Sin, 2007, 43(4): 363-366 .

Download:  PDF(1561KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A new method for strain measurement was advanced to obtain the strain distribution inside metal plastic deformation body. Through implanting bolts into the specimen and measuring the deformation of the blots, the strain on the screw interface can be calculated quantitatively. Contrast to the traditional mesh grid method, the screw method does not split the specimen and can be used for open forging without changing the stress state.
Key words:  Screw method      plastic deformation      strain distribution      
Received:  01 August 2006     
ZTFLH:  TG302  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I4/363

[1]Koch L T,Wanheim T.In:Wang Z R ed.,Proc Int Conf on Rotary Forming,Beijing:International Academic Pub- lishers,1989:165
[2]Pertence A E M,Cetlin P R.J Mater Process Technol, 1998;84:261
[3]Gouveia B P P A,Rodrigues J M C,Martins R A F,Bay N.J Mater Process Technol,2001;112:244
[4]Dutta A,Rao A V.J Mater Process Technol,1997;77: 392
[5]Robinson T,Ou H,Armstrong C G.J Mater Process Tech- nol,2004;153-154:54
[6]Ravn B G,Anderson C B,Wanheim T.J Mater Process Technol,2001;115:256
[7]Cheng J,Fang R H,Lin Y P.Polym Mater Sci Eng,2001; 17(2):21 (程军,方如华,林冶平.高分子材料科学与工程,2001; 17(2):21)
[8]Macura P,Petruska J.J Mater Process Technol,1996;60: 55
[9]Huang Z H,Fu P F.J Mater Process Technol,2001;114: 185
[10]Fereshteh-Saniee F,Pillinger I,Hartley P.J Mater Pro- cess Technol,2004;153-154:151
[11]Chinese Mechanical Engineering Society-Forging Branch. Forging Handbook,Vol.1:Forging.2nd ed,Beijing:China Machine Press,2002:112 (中国机械工程学会锻压学会.锻压手册,第1卷:锻造.第二版,北京:机械工业出版社,2002:112)
[12]Lin Y P,Xie S S,Cheng J.Experimental Methods of Metal Plastic Deformation.Beijing:Metallurgical Indus- try Press,2002:35 (林冶平,谢水生,程军.金属塑性变形的实验方法.北京:冶金工业出版社,2002:35)
[13]Translated by Liang B W.Principles of Metal Forming.Beijing:Higher Education Press,1956: 260 (著,梁炳文译.金属压力加工原理.北京:高等教育出版社,1956:260)
[1] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[3] GUO Xiangru, SHEN Junjie. Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects[J]. 金属学报, 2022, 58(3): 375-384.
[4] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[5] LIN Pengcheng, PANG Yuhua, SUN Qi, WANG Hangduo, LIU Dong, ZHANG Zhe. 3D-SPD Rolling Method of 45 Steel Ultrafine Grained Bar with Bulk Size[J]. 金属学报, 2021, 57(5): 605-612.
[6] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[7] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[8] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[9] CHEN Xiang,CHEN Wei,ZHAO Yang,LU Sheng,JIN Xiaoqing,PENG Xianghe. Assembly Performance Simulation of NiTiNb Shape Memory Alloy Pipe Joint Considering Coupling Effect of Phase Transformation and Plastic Deformation[J]. 金属学报, 2020, 56(3): 361-373.
[10] WANG Lei, AN Jinlan, LIU Yang, SONG Xiu. Deformation Behavior and Strengthening-Toughening Mechanism of GH4169 Alloy with Multi-Field Coupling[J]. 金属学报, 2019, 55(9): 1185-1194.
[11] Jian PENG,Yi GAO,Qiao DAI,Ying WANG,Kaishang LI. Fatigue and Cycle Plastic Behavior of 316L Austenitic Stainless Steel Under Asymmetric Load[J]. 金属学报, 2019, 55(6): 773-782.
[12] Zongwei JI,Song LU,Hui YU,Qingmiao HU,Levente Vitos,Rui YANG. First-Principles Study on the Impact of Antisite Defects on the Mechanical Properties of TiAl-Based Alloys[J]. 金属学报, 2019, 55(5): 673-682.
[13] Aidong TU, Chunyu TENG, Hao WANG, Dongsheng XU, Yun FU, Zhanyong REN, Rui YANG. Molecular Dynamics Simulation of the Structure and Deformation Behavior of γ/α2 Interface in TiAl Alloys[J]. 金属学报, 2019, 55(2): 291-298.
[14] XIONG Jian,WEI Dean,LU Songjiang,KAN Qianhua,KANG Guozheng,ZHANG Xu. A Three-Dimensional Discrete Dislocation Dynamics Simulation on Micropillar Compression of Single Crystal Copper with Dislocation Density Gradient[J]. 金属学报, 2019, 55(11): 1477-1486.
[15] Haifeng ZHANG, Haile YAN, Nan JIA, Jianfeng JIN, Xiang ZHAO. Exploring Plastic Deformation Mechanism of MultilayeredCu/Ti Composites by Using Molecular Dynamics Modeling[J]. 金属学报, 2018, 54(9): 1333-1342.
No Suggested Reading articles found!