Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (12): 1233-1238     DOI:
Research Articles Current Issue | Archive | Adv Search |
CRYSTALLOGRAPHIC ANALYSIS OF THE FRACTURE FACETS IN LOW TEMPERATURE BRITTLE FRACTURE OF A HIGH NITROGEN BEARING AUSTENITIC STEEL
;;;
大连交通大学
Cite this article: 

;. CRYSTALLOGRAPHIC ANALYSIS OF THE FRACTURE FACETS IN LOW TEMPERATURE BRITTLE FRACTURE OF A HIGH NITROGEN BEARING AUSTENITIC STEEL. Acta Metall Sin, 2007, 43(12): 1233-1238 .

Download:  PDF(2004KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Microstructures and crystallographic features in low temperature brittle fracture of 18Cr-18Mn-0.7N high nitrogen bearing austenitic steel were investigated by means of scanning electronic microscopy. The results showed that there are three kinds of fracture facets on the fracture surface: annealing twin boundary fracture facet, intergranular fracture facet and transgranular fracture facet. Annealing twin boundary facture facet is one of planar and smooth {111} planes, with bent steps on it, and the planar deformations proceeding on the other three sets of {111} planes form a pattern of three sets of straight-lines intersected at 60º on the annealing twin boundary facet. Intergranular facture facet is a kind of smoothly curved facet on which the planar deformations proceeding on {111} planes form a pattern of several sets of curved parallel lines that intersect each other at different angles. Transgranular facture facet is rough and uneven, with steps parallel to {111} plane and river patterns or edge patterns on it, which is the consequence of coalescence of cracks propagating on different {111} planes.
Key words:  high nitrogen bearing austenitic steel      brittle fracture at low temperature      three kinds of fracture f     
Received:  01 February 2007     
ZTFLH:  TG146.1  
  TG113  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I12/1233

[1]Cui D W,Qu X H,Li K.Mater Rev,2005;19(12):64 (崔大伟,曲选辉,李科.材料导报,2005;19(12):64)
[2]Tsuchiyama T,Ito H,Kataoka K.Metall Mater Trans, 2003;34A:1626
[3]Tobler R L,Leyn D.Metall Thins,1988;19A:1626
[4]Tomota Y,Endo S.Iron Steel lnst Jpn Int,1990;30:656
[5]Tomota Y,Xia Y,Inoue K.Acta Mater,1998;46:1577
[6]Chen K M,Dai Q X.J Iron Steel Res,1998;10(1):38 (陈康敏,戴起勋.钢铁研究学报,1998;10(1):38)
[7]Wang A D,Dai Q X,Cheng X N.J Jiangsu Univ Sci Technol(Nat Sci),2000;21(5):59 (王安东,戴起勋,程晓农.江苏理工大学学报(自然版),2000;21(5):59)
[8]Liu S C,Hashida T,Takahashi H,Kuwano H,Hamaguchi Y.Metall Mater Trans,1998;29A:791
[9]Liu S C,Liu D Y,Dai Y K.Acta Metall Sin,2002;38: 1042 (刘世程,刘德义,戴雅康.金属学报,2002;38:1042)
[10]Liu S Y,Liu S C,Liu D Y.J Mater Sci,2004;39:28418
[11]Liu S C,Liu D Y,Chen R S,Dai Y K.Trans Mater Heat Treat,2005;26(4):33 (刘世程,刘德义,陈汝淑,戴雅康.材料热处理学报,2005;26(4):33)
[12]Liao Q C,Sun F Y,Lan F L.Acta Metall Sin,1979;15(1): 77 (廖乾初,孙福玉,蓝芬兰.金属学报,1979;15(1):77)
[1] . Effects of Overlapping Process on Grain Orientation and Microstructure of  Nickel-Based Single Crystal Superalloy DD491Fabricated by Selective Laser Melting[J]. 金属学报, 0, (): 0-0.
[2] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[4] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[5] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[6] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[7] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[8] . Effects of Cu Content on the Microstructure and Tensile Property of K4061 Superalloy[J]. 金属学报, 0, (): 0-0.
[9] . Osteogenic and Antibacterial Metal-Polyphenol Drug-Loaded Coating on Biodegradable Zinc for Orthopedic Implants Application[J]. 金属学报, 0, (): 0-0.
[10] CAO Shuting, ZHANG Shaohua, ZHANG Jian. Combustion Behavior of GH4061 Alloy in High Pressure and Oxygen-Enriched Atmosphere[J]. 金属学报, 2023, 59(4): 547-555.
[11] ZHU Guoliang, KONG Decheng, ZHOU Wenzhe, HE Jian, DONG Anping, SHU Da, SUN Baode. Research Progress on the Crack Formation Mechanism and Cracking-Free Design of γ' Phase Strengthened Nickel-Based Superalloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 16-30.
[12] . Effects of Cryorolling on Properties and Precipitation Behavior of a High-Strength and High-Conductivity Cu-1Cr-0.2Zr-0.25Nb Alloy[J]. 金属学报, 0, (): 0-0.
[13] SONG Qingzhong, QIAN Kun, SHU Lei, CHEN Bo, MA Yingche, LIU Kui. Interfacial Reaction Between Nickel-Based Superalloy K417G and Oxide Refractories[J]. 金属学报, 2022, 58(7): 868-882.
[14] SHEN Gang, ZHANG Wentai, ZHOU Chao, JI Huanzhong, LUO En, ZHANG Haijun, WAN Guojiang. Mechanical Properties and Degradation Behavior of Hot-Extruded Zn-2Cu-0.5Zr Alloy[J]. 金属学报, 2022, 58(6): 781-791.
[15] GAO Yubi, DING Yutian, LI Haifeng, DONG Hongbiao, ZHANG Ruiyao, LI Jun, LUO Quanshun. Effect of Deformation Rate on the Elastic-Plastic Deformation Behavior of GH3625 Alloy[J]. 金属学报, 2022, 58(5): 695-708.
No Suggested Reading articles found!