Osteogenic and Antibacterial Metal-Polyphenol Drug-Loaded Coating on Biodegradable Zinc for Orthopedic Implants Application
LIN Xue1,2, QIAN Junyu1,2, ZHANG Wentai1,2, WANG Peng1,2, WAN Guojiang1,2()
1 Key Laboratory of Advanced Technologies of Materials (Ministry of Education), College of Medicine, Southwest Jiaotong University, Chengdu 610031, China 2 School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
Cite this article:
LIN Xue, QIAN Junyu, ZHANG Wentai, WANG Peng, WAN Guojiang. Osteogenic and Antibacterial Metal-Polyphenol Drug-Loaded Coating on Biodegradable Zinc for Orthopedic Implants Application. Acta Metall Sin, 2024, 60(11): 1545-1558.
Biodegradable metallic Zn materials are being considered for orthopedic implant applications because of their moderate degradation rate and potential bio-functionalities. Nevertheless, their clinical use is limited due to inadequate osteogenic properties owing to Zn2+ burst release, premature mechanical failure caused by non-uniform corrosion, and poor antibacterial ability. Therefore, to overcome these issues, a metal-polyphenol drug-loaded coating was functionalized on the surface using an alternating chemical deposition method out of tannic acid/metformin molecules and active metallic ions via coordination/chelation reactions. The coating was characterized by homogeneous compactness, which enhanced the corrosion resistance of the Zn substrate, adjusted the corrosion mode, suppressed the release of Zn2+, and regulated metformin release. The in vitro pre-osteoblasts (MC3T3-E1) culture results showed that the coated Zn samples exhibited excellent osteogenic ability. The antibacterial assays with coated Zn samples demonstrated strong antibacterial efficiency.
Fund: National Key Research and Development Program of China(2016YFC1102500);Science and Tech-nology Program of Sichuan Province(2020YFH0077);Science and Tech-nology Program of Sichuan Province(2024YFHZ0310);Open Fund Project of Sichuan Provincial Key Laboratory for Material Corrosion and Protection(2022CL07)
Fig.1 Surface SEM images of Zn (a), polyphenol drug-loaded coating (TA/Met) (b), and metal-polyphenol drug-loaded coatings including Cu-TA/Met (c), Fe-TA/Met (d), Mg-TA/Met (e), and Sr-TA/Met (f) (Insets show the high magnified images)
Fig.2 FTIR spectra of Zn, TA/Met, Cu-TA/Met, Fe-TA/Met, Mg-TA/Met, and Sr-TA/Met
Fig.3 High-resolution XPS of C1s (a), N1s (b), O1s (c), Zn2p (d), Cu2p, Fe2p, Mg2p, and Sr3d (e) of TA/Met, Cu-TA/Met, Fe-TA/Met, Mg-TA/Met, and Sr-TA/Met
Sample
C
N
O
Zn
M
Zn
7.11
0.19
19.54
73.16
-
TA/Met
51.15
5.68
34.31
8.86
-
Cu-TA/Met
48.77
1.94
36.53
11.48
1.28
Fe-TA/Met
52.12
2.32
30.94
10.55
4.07
Mg-TA/Met
44.28
2.68
33.74
14.07
5.23
Sr-TA/Met
38.25
3.13
47.35
7.89
3.38
Table 1 Elements compositions of sample surface according to XPS
Fig.4 Potentiodynamic polarization curves (a), the obtained self corrosion potential (Ecorr) and self corrosion current density (icorr) (b), Nyquist plots and equivalent electrical circuit (inset) (c), Bode-impedance and Bode-phase angle (d) diagrams of the Zn, TA/Met, Cu-TA/Met, Fe-TA/Met, Mg-TA/Met, and Sr-TA/Met in Hank's solution at (37 ± 0.5)oC (i—gal-vanic current density, Z″—imaginary part of impedance, Z′—real part of impedance, |Z|—impedance modulus, Rs—resistance of electrolyte, Qp—capacitance of the corrosion products layer, Rp—resistance of the coating, Qct—double-layer capacitance, Rct—resistance of the interfacial charge transfer reaction)
Sample
Rs
Ω·cm2
Qp
10-6 S n ·Ω-1·cm-2
Rp
Ω·cm2
Qct
10-6 S n ·Ω-1·cm-2
Rct
Ω·cm2
Zn
12.81
18.73
205.11
0.21
56.42
TA/Met
35.60
13.58
302.12
4.81
218.21
Cu-TA/Met
36.68
9.12
545.43
24.53
487.23
Fe-TA/Met
33.07
10.08
698.12
6.91
521.21
Mg-TA/Met
34.21
3.84
1221.24
23.11
825.23
Sr-TA/Met
36.58
3.48
843.25
23.14
731.12
Table 2 Fitting EIS results of samples
Fig.5 Surface SEM images of Zn (a), TA/Met (b), Cu-TA/Met (c), Fe-TA/Met (d), Mg-TA/Met (e), and Sr-TA/Met (f) immersed in Hank's solution at (37 ± 0.5)oC for 21 d (Insets show the high magnified images)
Fig.6 XRD spectra (a), the accumulated Zn2+ concentrations (b), pH value changed with immersion time (c), and metformin concentration (d) of Zn, TA/Met, Cu-TA/Met, Fe-TA/Met, Mg-TA/Met, and Sr-TA/Met immersed in Hank's solution at (37 ± 0.5)oC for 21 d
Fig.7 Surface SEM images of Zn (a), TA/Met (b), Cu-TA/Met (c), Fe-TA/Met (d), Mg-TA/Met (e), and Sr-TA/Met (f) immersed in Hank's solution at (37 ± 0.5)oC for 21 d after removal of corrosion products (Insets show the high magnified images)
Fig.8 Fluorescence microscopy images of MC3T3-E1 cultured on stainless steel (SS) (a), Zn (b), TA/Met (c), Cu-TA/Met (d), Fe-TA/Met (e), Mg-TA/Met (f), and Sr-TA/Met (g) for 1 d
Fig.9 Adherent cell amounts (a) and quantification of alkaline phosphatase (ALP) activities (b) of MC3T3-E1 cultured on SS, Zn, TA/Met, Cu-TA/Met, Fe-TA/Met, Mg-TA/Met, and Sr-TA/Met for 1 d (Null hypothesis value of p < 0.05 was labeled as *, p < 0.01 as **, and p < 0.001 as ***)
Fig.10 ALP staining images of MC3T3-E1 cultured on SS (a), Zn (b), TA/Met (c), Cu-TA/Met (d), Fe-TA/Met (e), Mg-TA/Met (f), and Sr-TA/Met (g) for 14 d
Fig.11 Photos of colony numbers (a1-a7, b1-b7) and antibacterial rates (c, d) of S.aureus (a1-a7, c) and E.coli (b1-b7, d) cultured on SS (a1, b1), Zn (a2, b2), TA/Met (a3, b3), Cu-TA/Met (a4, b4), Fe-TA/Met (a5, b5), Mg-TA/Met (a6, b6), and Sr-TA/Met (a7, b7) for 1 d
Fig.12 Schematic of the formation mechanism of metal-polyphenol drug-loaded coating
1
Zheng Y F, Wu Y H. Revolutionizing metallic biomaterials [J]. Acta Metall. Sin., 2017, 53: 257
doi: 10.11900/0412.1961.2016.00529
Shi Z Z, Gao X X, Zhang H J, et al. Design biodegradable Zn alloys: Second phases and their significant influences on alloy properties [J]. Bioact. Mater., 2020, 5: 210
doi: 10.1016/j.bioactmat.2020.02.010
pmid: 32123774
3
Fang H, Qi X Y, Zhou S C, et al. High-efficient vacuum ultraviolet-ozone assist-deposited polydopamine for poly (lactic-co-glycolic acid)-coated pure Zn toward biodegradable cardiovascular stent applications [J]. ACS Appl. Mater. Interfaces, 2021, 14: 3536
4
Su Y C, Wang K, Gao J L, et al. Enhanced cytocompatibility and antibacterial property of zinc phosphate coating on biodegradable zinc materials [J]. Acta Biomater., 2019, 98: 174
doi: S1742-7061(19)30231-4
pmid: 30930304
5
Zhang W T, Li P, Shen G, et al. Appropriately adapted properties of hot-extruded Zn-0.5Cu-xFe alloys aimed for biodegradable guided bone regeneration membrane application [J]. Bioact. Mater., 2021, 6: 975
doi: 10.1016/j.bioactmat.2020.09.019
pmid: 33102940
6
Han H S, Loffredo S, Jun I, et al. Current status and outlook on the clinical translation of biodegradable metals [J]. Mater. Today, 2019, 23: 57
7
Sheng Y Y, Yang J J, Zhao X Y, et al. Development and invitro biodegradation of biomimetic zwitterionic phosphorylcholine chitosan coating on Zn1Mg alloy [J]. ACS Appl. Mater. Interfaces, 2020, 12: 54445
8
Su Y C, Yang H T, Gao J L, et al. Interfacial zinc phosphate is the key to controlling biocompatibility of metallic zinc implants [J]. Adv. Sci., 2019, 6: 1900112
9
Guillory R J, Sikora-Jasinska M, Drelich J W, et al. In vitro corrosion and in vivo response to zinc implants with electropolished and anodized surfaces [J]. ACS Appl. Mater. Interfaces, 2019, 11: 19884
10
Mo X S, Qian J Y, Chen Y Q, et al. Corrosion and degradation decelerating alendronate embedded zinc phosphate hybrid coating on biodegradable Zn biomaterials [J]. Corros. Sci., 2021, 184: 109398
11
Qian J Y, Zhang W T, Chen Y Q, et al. Osteogenic and angiogenic bioactive collagen entrapped calcium/zinc phosphates coating on biodegradable Zn for orthopedic implant applications [J]. Biomater. Adv., 2022, 136: 212792
12
Zhu L, Tong X, Ye Z Q, et al. Zinc phosphate, zinc oxide, and their dual-phase coatings on pure Zn foam with good corrosion resistance, cytocompatibility, and antibacterial ability for potential biodegradable bone-implant applications [J]. Chem. Eng. J., 2022, 450: 137946
13
Wang B B, Li Y C, Wang S S, et al. Electrodeposited dopamine/strontium-doped hydroxyapatite composite coating on pure zinc for anti-corrosion, antimicrobial and osteogenesis [J]. Mater. Sci. Eng., 2021, C129: 112387
14
Li X J, Shi H, Pan K, et al. Improved biocompatibility and antibacterial property of zinc alloy fabricated with γ-polyglutamic acid-g-dopamine/copper coatings for orthopedic implants [J]. Prog. Org. Coat., 2022, 173: 107215
15
Pan K, Zhang W, Shi H, et al. Facile fabrication of biodegradable endothelium-mimicking coatings on bioabsorbable zinc-alloy stents by one-step electrophoretic deposition [J]. J. Mater. Chem., 2022, 10B: 3083
16
Lu R F, Zhang X Q, Cheng X X, et al. Medical applications based on supramolecular self-assembled materials from tannic acid [J]. Front. Chem., 2020, 8: 583484
17
Bigham A, Rahimkhoei V, Abasian P, et al. Advances in tannic acid-incorporated biomaterials: Infection treatment, regenerative medicine, cancer therapy, and biosensing [J]. Chem. Eng. J., 2022, 432: 134146
18
Gan D L, Xing W S, Jiang L L, et al. Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry [J]. Nat. Commun., 2019, 10: 1487
doi: 10.1038/s41467-019-09351-2
pmid: 30940814
19
Kaczmarek B. Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials—A minireview [J]. Materials, 2020, 13: 3224
20
Wu Y, Yan R, Duan Y Y, et al. An environmental-friendly tannic acid/Zn conversion film with a good corrosion protection for iron [J]. Surf. Interfaces, 2021, 24: 101078
21
Asgari M, Yang Y, Yang S, et al. Mg-phenolic network strategy for enhancing corrosion resistance and osteocompatibility of degradable magnesium alloys [J]. ACS Omega, 2019, 4: 21931
doi: 10.1021/acsomega.9b02976
pmid: 31891072
22
He M, Yang B, Huo F J, et al. A novel coating with universal adhesion and inflammation-responsive drug release functions to manipulate the osteoimmunomodulation of implants [J]. J. Mater. Chem., 2021, 9B: 5272
23
Chen H Y, Zhan J H, Man L, et al. High foliar retention tannic acid/Fe3+ functionalized Ti-pillared montmorillonite pesticide formulation with pH-responsibility and high UV stability [J]. Appl. Surf. Sci., 2023, 620: 156838
24
Sharma A, Verma C, Mukhopadhyay S, et al. Development of sodium alginate/glycerol/tannic acid coated cotton as antimicrobial system [J]. Int. J. Biol. Macromol., 2022, 216: 303
doi: 10.1016/j.ijbiomac.2022.06.168
pmid: 35777513
25
O'Neill E, Awale G, Daneshmandi L, et al. The roles of ions on bone regeneration [J]. Drug Discov. Today, 2018, 23: 879
doi: S1359-6446(17)30328-8
pmid: 29407177
26
Duan J W, Chen Z G, Liang X Y, et al. Construction and application of therapeutic metal-polyphenol capsule for peripheral artery disease [J]. Biomaterials, 2020, 255: 120199
27
Lei T, Deng S W, Chen P, et al. Metformin enhances the osteogenesis and angiogenesis of human umbilical cord mesenchymal stem cells for tissue regeneration engineering [J]. Int. J. Biochem. Cell Biol., 2021, 141: 106086
28
Zhang R, Liang Q Y, Kang W Y, et al. Metformin facilitates the proliferation, migration, and osteogenic differentiation of periodontal ligament stem cells in vitro [J]. Cell Biol. Int., 2020, 44: 70
29
Lin Q X, Zhou Y J, Yin M, et al. Hydroxyapatite/tannic acid composite coating formation based on Ti modified by TiO2 nanotubes [J]. Colloids Surf., 2020, 196B: 111304
30
Zhang H, Luo R F, Li W J, et al. Epigallocatechin gallate (EGCG) induced chemical conversion coatings for corrosion protection of biomedical MgZnMn alloys [J]. Corros. Sci., 2015, 94: 305
31
Qiu H, Tu Q F, Gao P, et al. Phenolic-amine chemistry mediated synergistic modification with polyphenols and thrombin inhibitor for combating the thrombosis and inflammation of cardiovascular stents [J]. Biomaterials, 2021, 269: 120626
32
Al-Saif F A, Refat M S. Synthesis, spectroscopic, and thermal investigation of transition and non-transition complexes of metformin as potential insulin-mimetic agents [J]. J. Therm. Anal. Calorim., 2013, 111: 2079
33
Refat M S, Al-Azab F M, Al-Maydama H M A, et al. Synthesis, spectroscopic and antimicrobial studies of La(III), Ce(III), Sm(III) and Y(III) Metformin HCl chelates [J]. Spectrochim. Acta, 2015, 142A: 392
34
Thompson K H, McNeill J H, Orvig C. Vanadium compounds as insulin mimics [J]. Chem. Rev., 1999, 99: 2561
doi: 10.1021/cr980427c
pmid: 11749492
35
Tao S, Hong B, Kerong Z. An infrared and Raman spectroscopic study of polyanilines co-doped with metal ions and H+ [J]. Spectrochim. Acta, 2007, 66A: 1364
36
Zhan W W, Gao L, Fu X, et al. Green synthesis of amino-functionalized carbon nanotube-graphene hybrid aerogels for high performance heavy metal ions removal [J]. Appl. Surf. Sci., 2019, 467-468: 1122
37
Pourzolfaghar H, Hosseini S, Zuki F M, et al. Recent advancements to mitigate zinc oxide formation in zinc-air batteries: A technical review [J]. Mater. Today Commun., 2021, 29: 102954
38
Zhang B, Yao R J, Li L H, et al. Green tea polyphenol induced Mg2+-rich multilayer conversion coating: Toward enhanced corrosion resistance and promoted in situ endothelialization of AZ31 for potential cardiovascular applications [J]. ACS Appl. Mater. Interfaces, 2019, 11: 41165
39
Xu K, Zhou M, Li M, et al. Metal-phenolic networks as a promising platform for pH-controlled release of bioactive divalent metal ions [J]. Appl. Surf. Sci., 2020, 511: 145569
40
Yan Y, Chu X, Luo X E, et al. A homogenous microstructural Mg-based matrix model for orthopedic application with generating uniform and smooth corrosion product layer in Ringer's solution: Study on biodegradable behavior of Mg-Zn alloys prepared by powder metallurgy as a case [J]. J. Magnes. Alloys., 2021, 9: 225
41
Zhang W T, Zhao S, Mo X S, et al. Mg ions incorporated phytic acid (PA) and zoledronic acid (ZA) of metal-organic complex coating on biodegradable magnesium for orthopedic implants application [J]. Surf. Coat. Technol., 2021, 413: 127075
42
Almeida L C, Correia R D, Palys B, et al. Comprehensive study of the electrochemical growth and physicochemical properties of polycatecholamines and polycatechol [J]. Electrochim. Acta, 2021, 386: 138515
43
Kasprzak M M, Erxleben A, Ochocki J. Properties and applications of flavonoid metal complexes [J]. RSC Adv., 2015, 5: 45853
44
Wang X M, Yin Z Z, Yu X T, et al. Comparison of corrosion resistance of phenylalanine, methionine, and asparagine-induced Ca-P coatings on AZ31 magnesium alloys [J]. Acta Metall. Sin., 2021, 57: 1258
doi: 10.11900/0412.1961.2021.00058
Yin Z Z, Zhao W, Xu J, et al. Corrosion resistance of superhydrophobic Mg(OH)2/calcium myristate composite coating on magnesium alloy AZ31 [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1618
46
Tu Q F, Shen X H, Liu Y W, et al. A facile metal-phenolic-amine strategy for dual-functionalization of blood-contacting devices with antibacterial and anticoagulant properties [J]. Mater. Chem. Front., 2019, 3: 265
47
Boanini E, Gazzano M, Bigi A. Ionic substitutions in calcium phosphates synthesized at low temperature [J]. Acta Biomater., 2010, 6: 1882
doi: 10.1016/j.actbio.2009.12.041
pmid: 20040384
48
Pan H B, Li Z Y, Wang T, et al. Nucleation of strontium-substituted apatite [J]. Cryst. Growth Des., 2009, 9: 3342
49
Choi S, Murphy W. The effect of mineral coating morphology on mesenchymal stem cell attachment and expansion [J]. J. Mater. Chem., 2012, 22: 25288
pmid: 25663752