Please wait a minute...
Acta Metall Sin  2007, Vol. 42 Issue (1): 64-70     DOI:
Research Articles Current Issue | Archive | Adv Search |
SURFACE MODIFICATION OF 316L STAINLESS STEEL BY HIGH CURRENT PULSED ELECTRON BEAM Part I Selective surface purification and its mechanism
;;;
大连理工大学材料学院
Cite this article: 

;. SURFACE MODIFICATION OF 316L STAINLESS STEEL BY HIGH CURRENT PULSED ELECTRON BEAM Part I Selective surface purification and its mechanism. Acta Metall Sin, 2007, 42(1): 64-70 .

Download:  PDF(885KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In this paper, the processing and corresponding mechanisms of the surface modification of 316L stainless steel by high current pulsed electron beam were studied in detail. The results showed that MnS inclusions in the 316LSS served as the nucleation sites for craters formed during the bombardment. The overheating of these inclusions or their interfaces and following eruptions are believed to be the reason for the crater formations. As a result, MnS inclusions in the surface layer decreased with the increasing number of pulses, leading to a selective surface purification of the material. On the other hand, the physical damages induced by the electron beam bombardment are repaired after repeated pulses, that is, the crater density decreases with the increasing number of bombardments, meanwhile the holes in the crater centers are removed gradually.
Key words:  High current pulsed electron beam      Stainless steel      Selective surface purification      Craters      
Received:  04 April 2006     
ZTFLH:  O482.2  
  TG172  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V42/I1/64

[1] Pogrebnjak A D,Ladysev V S,Pogrebnjak N A,Michaliov A D,Shablya V T,Valyaev A N,Valyaev A A,Loboda V B.Vacuum,2000;58:45
[2] Pogrebnjak A D,Mikhaliov A D,Pogrebnjak N A Jr., Tsvintarnaya Y V,Lavrentiev V I, Iljashenko M,Valyaev A N,Bratushka S,Zecca A,Sandrik R.Phys Lett,1998; 241A:357
[3] Ivanov Y,Matz W,Rotshtein V,Gunzel R,Shevchenko N.Surf Coat Technol,2002;150:188
[4] Proskurovsky D I,Rotshtein V P,Ozur G E,Markov A B,Nazarov D S.J Vac Sci Technol,1998;16A:2480
[5] Proskurovsky D I,Rotshtein V P,Ozur G E,Ivanov Y F, Markov A B.Surf Coat Technol,2000;125:49
[6] Pogrebnjak A D,Bratushka S,Boyko V I,Shamanin I V, Tsvintaruaya Y V.Nucl Instrum Methods Phys Res,1998; 145B:373
[7] Pogrebnjak A D,Shumakova N I.Surf Coat Technol, 1999; 122:183
[8] Hao S Z,Gao B,Wu A M,Zou J X,Qin Y,Dong C,An J, Guan Q F.Nucl Instrum Methods Phys Res,2005;240B: 646
[9] Zou J X,Grosdidier T,Zhang K M,Dong C.Acta Mater, 2006;54:5409
[10] Hao S Z,Gao B,Wu A M,Zou J X,Qin Y,Dong C,Guan Q F.Mater Sci Forum,2005;475-479:3959
[11] Gao B,Hao S Z,Zou J X,Grosdidier T,Jiang L M,Dong C,Zhou J Y.J Vac Sci Technol, 2005;23A:1538
[12] Qin Y,Dong C,Wang X G,Hao S Z,Wu A M,Zou J X, Liu Y.J Vac Sci Technol, 2003;21A:1934
[13] Korotaev A D,Ovchinnikov S V,Pochivalov Y I,Tyu- mentsev A N,Shchipakin D A,Tretjak M V,Isakov I F, Remnev G E.Surf Coat Technol,1998;105:84
[14] Shulov V A,Nochovnaya N A.Nucl Instrum Methods Phys Res,1999;148B:154
[15] Zhu X P,Lei M K,Dong Z H,Miao S M,Ma T C.Surf Coat Technol,2003;173:105
[16] Wood B,Perry A,Bitteker L J,Waganaar W j.Surf Coat Technol,1998;108/109:171
[17] Qin Y,Wang X G,Dong C,Hao S Z,Liu Y,Zou J X,Wu A M,Guan Q F.Acta Phys Sin,2003;52:3043 (秦颖,王晓钢,董闯,郝胜智,刘悦,邹建新,吴爱民,关庆丰.物理学报,2003;52:3043)
[18] Dong C,Wu A M,Hao S Z,Zou J X,Liu Z M,Zhong P, Zhang A M,Xu T,Chen J M,Xu J,Liu Q,Zhou Z R.Surf Coat Technol,2003;163-164:620
[19] Ryan M P,Williams D E,Chater R J,Hutton B M, McPhail D S.Nature,2002;415:770
[20] Newman R C.Natune,2002;415:743
[21] Qin Y,Zou J X,Dong C,Wang X G,Wu A M,Liu Y,Hao S Z,Guan Q F.Nucl Instrum Methods Phys Res,2004; 225B:544
[22] Zou J X,Qin Y,Dong C,Wu A M,Hao S Z,Wang X G.J Vac Sci Technol, 2004;22A:545
[23] Aziz M J.J Appl Phys,1982;53:1158
[24] Zou J X,Wu A M,Dong C,Hao S Z,Liu Z M,Ma H T, Surf Coat Technol, 2004;183:261
[1] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[2] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[3] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[4] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[5] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[6] WEN Donghui, JIANG Beibei, WANG Qing, LI Xiangwei, ZHANG Peng, ZHANG Shuyan. Microstructure Evolution at Elevated Temperature and Mechanical Properties of MoNb-Modified FeCrAl Stainless Steel[J]. 金属学报, 2022, 58(7): 883-894.
[7] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[8] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[9] LUO Wenze, HU Long, DENG Dean. Numerical Simulation and Development of Efficient Calculation Method for Residual Stress of SUS316 Saddle Tube-Pipe Joint[J]. 金属学报, 2022, 58(10): 1334-1348.
[10] CAO Chao, JIANG Chengyang, LU Jintao, CHEN Minghui, GENG Shujiang, WANG Fuhui. Corrosion Behavior of Austenitic Stainless Steel with Different Cr Contents in 700oC Coal Ash/High Sulfur Flue-Gas Environment[J]. 金属学报, 2022, 58(1): 67-74.
[11] PAN Qingsong, CUI Fang, TAO Nairong, LU Lei. Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. 金属学报, 2022, 58(1): 45-53.
[12] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[13] CHEN Guo, WANG Xinbo, ZHANG Renxiao, MA Chengyue, YANG Haifeng, ZHOU Li, ZHAO Yunqiang. Effect of Tool Rotation Speed on Microstructure and Properties of Friction Stir Processed 2507 Duplex Stainless Steel[J]. 金属学报, 2021, 57(6): 725-735.
[14] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
[15] HUANG Yichuan, WANG Qing, ZHANG Shuang, DONG Chuang, WU Aimin, LIN Guoqiang. Optimization of Stainless Steel Composition for Fuel Cell Bipolar Plates[J]. 金属学报, 2021, 57(5): 651-664.
No Suggested Reading articles found!