Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (9): 919-924     DOI:
Research Articles Current Issue | Archive | Adv Search |
A MICROMECHANICAL CONSTITUTIVE MODEL OF SHAPE MEMORY ALLOYS
ZHOU Bo; WANG Zhenqing; LIANG Wenyan
哈尔滨工程大学建筑工程学院
Cite this article: 

ZHOU Bo; WANG Zhenqing; LIANG Wenyan. A MICROMECHANICAL CONSTITUTIVE MODEL OF SHAPE MEMORY ALLOYS. Acta Metall Sin, 2006, 42(9): 919-924 .

Download:  PDF(196KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The conception of shape memory factor is defined to describe the superelasticity and shape memory effect of shape memory alloys. From the differential relationship between martensite fraction and free energy during phase transformation, a shape memory factor evolvement equation is established. Based on micromechanics theory, a 3-dimension constitutive model with considering the process of martensitic reorientation is developed, which possesses simpler mathematics form and clearer physics meaning than the previous models with the same functions.
Key words:  shape memory alloy      shape memory factor      evolvement equation      
Received:  12 December 2005     
ZTFLH:  TG139  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I9/919

[1]Müller I.Arch Ration Mech Anal,1979; 70:61
[2]Tanaka K.Res Mechcl,1986; 18:251
[3]Magee C L.The Nucleation of Martensite Phase Transformation.Metals Park Ohio:American Society for Metals,1970:115
[4]Liang C,Rogers C A.J Intell Mater Systems Struct,1990;1:207
[5]Boyd J G,Lagoudas D C.J Intell Mater Systems Struct,1994; 5:333
[6]Sun Q P,Hwang K C.J Mech Phys Solids,1993; 41(1):1
[7]Zheng Y J,Cui L S,Yang D Z.Acta Mater Compos Sin,2000; 17(1):81(郑雁军,崔立山,杨大智.复合材料学报,2000;17(1):81)
[8]Peng X,Yang Y,Huang S.Int J Solids Struct,2001; 38:6925
[9]Li H T,Peng X H,Huang S L.Acta Mech Solids Sin,2004; 25(1):58 (李海涛,彭向和,黄尚廉.固体力学学报,2004;25(1):58)
[10]Guo Y B,Liu F P,Zai X Y,Tang Z P,Yu J L.Explos Shock Waves,2003; 23(2):105 (郭扬波,刘方平,载翔宇,唐志平,虞吉林.爆炸与冲击,2003;23(2):105)
[11]Abeyaratne R,Knowles J K.J Mech Phys Solids,1993;41:541
[12]Brinson L C.J Intell Mater Systems Struct,1993; 4:229
[13]Zhu Y G,Lu H X,Yang D Z.Chin J Mater Res,2001;15:263(朱祎国,吕和祥,杨大智.材料研究学报,2001;15:263)
[14]Wollants P,Roos J R,Delaey L.Prog Mater Sci,1993;37:227
[15]Hill R.J Mech Phys Solids,1965; 13:213
[1] CHEN Fei, QIU Pengcheng, LIU Yang, SUN Bingbing, ZHAO Haisheng, SHEN Qiang. Microstructure and Mechanical Properties of NiTi Shape Memory Alloys by In Situ Laser Directed Energy Deposition[J]. 金属学报, 2023, 59(1): 180-190.
[2] YANG Chao, LU Haizhou, MA Hongwei, CAI Weisi. Research and Development in NiTi Shape Memory Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 55-74.
[3] ZHANG Xin, CUI Bo, SUN Bin, ZHAO Xu, ZHANG Xin, LIU Qingsuo, DONG Zhizhong. Effect of Y Element on the Properties of Cu-Al-Ni High Temperature Shape Memory Alloy[J]. 金属学报, 2022, 58(8): 1065-1071.
[4] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Lüders-Like Deformation and Stress Transfer Behavior in an In Situ NiTi-NbTi Composite[J]. 金属学报, 2021, 57(7): 921-927.
[5] YE Junjie, HE Zhirong, ZHANG Kungang, DU Yuqing. Effect of Ageing on Microsturcture, Tensile Properties, and Shape Memory Behaviors of Ti-50.8Ni-0.1Zr Shape Memory Alloy[J]. 金属学报, 2021, 57(6): 717-724.
[6] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[7] XIAO Fei, CHEN Hong, JIN Xuejun. Research Progress in Elastocaloric Cooling Effect Basing on Shape Memory Alloy[J]. 金属学报, 2021, 57(1): 29-41.
[8] CHEN Xiang,CHEN Wei,ZHAO Yang,LU Sheng,JIN Xiaoqing,PENG Xianghe. Assembly Performance Simulation of NiTiNb Shape Memory Alloy Pipe Joint Considering Coupling Effect of Phase Transformation and Plastic Deformation[J]. 金属学报, 2020, 56(3): 361-373.
[9] Lishan CUI, Daqiang JIANG. Progress in High Performance Nanocomposites Based ona Strategy of Strain Matching[J]. 金属学报, 2019, 55(1): 45-58.
[10] Zhirong HE, Peize WU, Kangkai LIU, Hui FENG, Yuqing DU, Rongyao JI. Microstructure, Phase Transformation and Shape Memory Behavior of Chilled Ti-47Ni Alloy Ribbons[J]. 金属学报, 2018, 54(8): 1157-1164.
[11] Jing BAI,Ze LI,Zhen WAN,Xiang ZHAO. A First-Principles Study on Crystal Structure, Phase Stability and Magnetic Properties of Ni-Mn-Ga-Cu Ferromagnetic Shape Memory Alloys[J]. 金属学报, 2017, 53(1): 83-89.
[12] Zhe LI,Chen XU,Kun XU,Hao WANG,Yuanlei ZHANG,Chao JING. STUDY OF MARTENSITIC TRANSFORMATION AND STRAIN BEHAVIOR IN Ni50-xCoxMn39Sn11 (x=0, 2, 4, 6) HEUSLER ALLOYS[J]. 金属学报, 2015, 51(8): 1010-1016.
[13] ZHANG Chengyan, SONG Fan, WANG Shanling, PENG Huabei, WEN Yuhua. EFFECT MECHANISM OF Mn CONTENTS ON SHAPE MEMORY OF Fe-Mn-Si-Cr-Ni ALLOYS[J]. 金属学报, 2015, 51(2): 201-208.
[14] CHEN Feng, SU Dexi, TONG Yunxiang, NIU Liqun,WANG Haibo, LI Li. MICROSTRUCTURE AND PHASE TRANSFORMATION OF Ni43Co7Mn41Sn9 HIGH TEMPERATURE SHAPE MEMORY ALLOY RIBBON[J]. 金属学报, 2013, 49(8): 976-980.
[15] LIU Qinghua,HUANG Yujin,LIU Jian,HU Qiaodan,LI Jianguo . MICROSTRUCTURE AND CRYSTAL ORIENTATION OF THE STEADY GROWTH ZONE IN THE DIRECTION ALLY SOLIDIFIED Ni-Fe-Ga-Co MAGNETIC SHAPE MEMORY ALLOYS[J]. 金属学报, 2013, 29(4): 391-398.
No Suggested Reading articles found!