Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (9): 914-918     DOI:
Research Articles Current Issue | Archive | Adv Search |
MULTI-PHASE FIELD SIMULATION OF EUTECTIC MORPHOLOGY SELECTION AND INTERFACE DESTABILIZATION
YANG Yujuan; WANG Jincheng; YANG Gencang; ZHU Yaochan
西北工业大学凝固技术国家重点实验室; 西安 710072
Cite this article: 

YANG Yujuan; WANG Jincheng; YANG Gencang; ZHU Yaochan. MULTI-PHASE FIELD SIMULATION OF EUTECTIC MORPHOLOGY SELECTION AND INTERFACE DESTABILIZATION. Acta Metall Sin, 2006, 42(9): 914-918 .

Download:  PDF(239KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The KKSM multi-phase field model is employed to simulate the eutectic growth in thin-film unidirectional solidification of CBr4-C2Cl6 eutectic alloy at low velocity. Three interface destabilization modes of eutectic lamellae, lamella annihilation, oscillatory instability and lamella nucleation, and the morphology selection of eutectic lamellae have reappeared veritably. With increasing of the initial lamella spacing, the stable morphology of the CBr4-C2Cl6 eutectic alloy evolved in the sequence of lamella annihilation→stable growth→1λO instability→2λO instability→lamella nucleation. The simulation results are in agreement not only with Karma et al's calculated results but also with Ginibre et al's experimental results qualitatively.
Key words:  multi-phase field      eutectic      lamella destabilization      
Received:  31 December 2005     
ZTFLH:  TG111.5  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I9/914

[1]Kurz W,Fisher D J.Fundamental of Solidification.Switzerland:Trans Tech Publications Ltd,1998:93
[2]Jackson K A,Hunt J D.TMS AIME,1966; 236:1129
[3]Karma A,Sarkissian A.Metall Mater Trans,1996; 17A:635
[4]Langer J S.Phys Rev Lett,1980; 44:1023
[5]Datye V,Langer J S.Phys Rev,1981; 24B:4155
[6]Kassner K,Misban C,Baumann R.Phys Rev,1995; 51E:R2751
[7]Ginibre M,Akamatsu S,Faivre G.Phys Rev,1997; 56E:780
[8]Wheeler A A,Boettinger W J,McFadden G B.Phys Rev,1992; 45E:7424
[9]Karma A,Rappel W J.Phys Rev,1998; 57E:4323
[10]Nestler B,Wheeler A A.Physica,2000; 138D:114
[11]Nestler B,Wheeler A A.Physica,2000; 141D:133
[12]Folch R,Plapp M.Phys Rev,2003; 68:010602
[13]Kim S G,Kim W T,Suzuki T.Phys Rev,1998; 58E:3316
[14]Kim S G,Kim W T,Suzuki T,Ode M.J Cryst Growth,2003; 261:135
[15]Ode M,Kim S G,Kim W T,Suzuki T.ISIJ Int,2005; 45:147
[16]Mergy J,Faivre G,Mellet R.J Cryst Growth,1993; 134:353
[1] MIAO Junwei, WANG Mingliang, ZHANG Aijun, LU Yiping, WANG Tongmin, LI Tingju. Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature[J]. 金属学报, 2023, 59(2): 267-276.
[2] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[3] ZHANG Lili, JI Zongwei, ZHAO Jiuzhou, HE Jie, JIANG Hongxiang. Key Factors Influencing Eutectic Si Modification in Al-Si Hypoeutectic Alloy by Trace La[J]. 金属学报, 2023, 59(11): 1541-1546.
[4] FENG Di, ZHU Tian, ZANG Qianhao, LEE Yunsoo, FAN Xi, ZHANG Hao. Solution Behavior of Spray-Formed Hypereutectic AlSiCuMg Alloy[J]. 金属学报, 2022, 58(9): 1129-1140.
[5] MA Dexin, ZHAO Yunxing, XU Weitai, PI Libo, LI Zhongxing. Surface Effect on Eutectic Structure Distribution in Single Crystal Superalloy Castings[J]. 金属学报, 2021, 57(12): 1539-1548.
[6] ZHANG Shaohua, XIE Guang, DONG Jiasheng, LOU Langhong. Investigation on Eutectic Dissolution Behavior of Single Crystal Superalloy by Differential Scanning Calorimetry[J]. 金属学报, 2021, 57(12): 1559-1566.
[7] XU Junfeng, ZHANG Baodong, Peter K Galenko. Model of Eutectic Transformation Involving Intermetallic Compound[J]. 金属学报, 2021, 57(10): 1320-1332.
[8] HE Siliang, ZHAO Yunsong, LU Fan, ZHANG Jian, LI Longfei, FENG Qiang. Effects of Hot Isostatic Pressure on Microdefects and Stress Rupture Life of Second-Generation Nickel-Based Single Crystal Superalloy in As-Cast and As-Solid-Solution States[J]. 金属学报, 2020, 56(9): 1195-1205.
[9] HUA Hanyu,XIE Jun,SHU Delong,HOU Guichen,Naicheng SHENG,YU Jinjiang,CUI Chuanyong,SUN Xiaofeng,ZHOU Yizhou. Influence of W Content on the Microstructure of Nickel Base Superalloy with High W Content[J]. 金属学报, 2020, 56(2): 161-170.
[10] BAO Feiyang, LI Yanfen, WANG Guangquan, ZHANG Jiarong, YAN Wei, SHI Quanqiang, SHAN Yiyin, YANG Ke, XU Bin, SONG Danrong, YAN Mingyu, WEI Xuedong. Corrosion Behaviors and Mechanisms of ODS Steel Exposed to Static Pb-Bi Eutectic at 600 and 700 ℃[J]. 金属学报, 2020, 56(10): 1366-1376.
[11] ZHANG Jianfeng,LAN Qing,GUO Ruizhen,LE Qichi. Effect of Alternating Current Magnetic Field on the Primary Phase of Hypereutectic Al-Fe Alloy[J]. 金属学报, 2019, 55(11): 1388-1394.
[12] Baogang WANG, Hongliang YI, Guodong WANG, Zhichao LUO, Mingxin HUANG. Reconstruction of 3D Morphology of TiB2 in In Situ Fe Matrix Composites[J]. 金属学报, 2019, 55(1): 133-140.
[13] Guangdong WANG, Ni TIAN, Changshu HE, Gang ZHAO, Liang ZUO. Formation of Second-Phases in a Direct-Chill Casting Al-12Si-0.65Mg-xMn Alloy[J]. 金属学报, 2018, 54(7): 1059-1067.
[14] Jianfeng ZHANG, Qing LAN, Qichi LE. Investigation on the Change of Thermoelectric Power of Al-Fe Hypoeutectic Alloy Melt Caused by AC Magnetic Field[J]. 金属学报, 2018, 54(7): 1042-1050.
[15] Yanxiang LI, Xiaobang LIU. Directionally Solidified Porous Metals: A Review[J]. 金属学报, 2018, 54(5): 727-741.
No Suggested Reading articles found!