Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (9): 897-902     DOI:
Research Articles Current Issue | Archive | Adv Search |
FIRST-PRINCIPLES STUDY OF OXYGEN ATOM ADSORPTION ON γ-TiAl(111) SURFACE
LI Hong; LIU Limin; WANG Shaoqing; YE Hengqiang
中国科学院金属研究所沈阳材料科学国家(联合)实验室;沈阳 110016
Cite this article: 

LI Hong; LIU Limin; WANG Shaoqing; YE Hengqiang. FIRST-PRINCIPLES STUDY OF OXYGEN ATOM ADSORPTION ON γ-TiAl(111) SURFACE. Acta Metall Sin, 2006, 42(9): 897-902 .

Download:  PDF(268KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Oxygen atom adsorption on γ-TiAl(111) surface is studied using first-principles approach. The adsorption site with more Ti atoms as its nearest neighbors on the surface layer is found to be preferred. Adsorption energy differences between different adsorption sites become smaller with increasing of oxygen coverage. Electron structure analysis shows the chemisorption is characterized mainly by ionic bonds. The stability of γ-TiAl(111) surfaces are investigated in a range of oxygen chemical potential, which indicated that the clean surface can be energetically stable only when the oxygen chemical potential is very low. For higher oxygen chemical potential the clean surface becomes unstable, therefore, the oxygen atoms start to adsorb on it, and soon come up to high coverage.
Key words:  γ-TiAl      first-principles calculation      oxidation      
Received:  10 April 2006     
ZTFLH:  TG132.32  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I9/897

[1]Appel F,Wagner R.Mater Sci Eng,1998;22:187
[2]Yun J H,Oh M H,Nam S W,Wee D M,Inui H,Yamaguchi M.Mater Sci Eng,1997; A240:702
[3]Becker S,Rahmel A,Schorr M,Scüze M.Oxid Met,1992;38:425
[4]Rahmel A,Quadakkers W J,Schütze M.Mater Corrs,1995; 46:271
[5]Singheiser L,Quadakkers W J,Shemet V.In:Kim Y W,Dimiduk D M,Loretto M H,eds.,Gamma Titanium Aluminide,Warrendale,PA:TMS,1999:743
[6]Shanabarger M R.Appl Surf Sci,1998; 134:179
[7]Kovács K,Perczel I V,Josepovits V K,Kiss G,Réti F,Dák P.Appl Surf Sci,2000; 200:185
[8]Xiong H P,Mao W,Ma W L,Chen Y F.Acta Metall Sin,2003; 39:744 (熊华平,毛唯.马文利,陈云锋.金属学报,2003;39:744)
[9]Dong L M,Cui Y Y,Yang R,Wang F H.Acta Metall Sin,2004; 40:383 (董利民,崔玉友,杨锐,王福会.金属学报,2004;40:383)
[10]Wang X J,Chang H W,Lei M K.Acta Metall Sin,2001;37:810 (王兴军,常海威,雷明凯.金属学报,2001;37:810)
[11]Kiejna A,Lundqvist B I.Phys Rev,2001; 63B:085405
[12]Kiejna A,Lundqvist B I.Surf Sci,2002; 504:1
[13]Kiejna A.Phys Rev,2003; 68B:235405
[14]Blo(?)ski P,Kiejna A,Hafner J.Surf Sci,2005; 590:88
[15]Tao X M,Tan M Q,Xu X J,Cai J Q,Chen W B,Zhao X X.Acta Phys Sin,2004; 53:3858 (陶向明,谭明秋,徐小军,蔡建秋,陈文斌,赵新新.物理学
??报;2004;53:3858)
[16]Ganduglia-pirovano M V,Scheffler M.Phys Rev,1999;59B:15533
[17]Reuter K,Ganduglia-Pirovano M V,Stnmpfl C,Scheffler M.Phys Rev,2002;65B:165403
[18]Lozovoi A Y,Alavi A,Finnis M W.Phys Rev Lett,2000;85:610
[19]Lozovoi A Y,Alavi A,Finnis M W.Comput Phys Commun,2001; 137:174
[20]Hansen L B,Hammer B.Computer Code Dacapo-2.7.6.Lyngby,Denmark:The Center for Atomic-Scale Materials Physics (CAMP),Technical University of Demark,2004
[21]Hohenberg P,Kohn W.Phys Rev,1964; 136B:864
[22]Kohn W,Sham L J.Phys Rev,1965; 140A:1133
[23]Vanderbilt D.Phys Rev,1990; 41B:7892
[24]Perdew J P,Chevary J A,Vosko S H,Jackson K A,Pederson M A,Singh D J,Fiolhais C.Phys Rev,1992; 46B:6671
[25]Kresse G,Forthmüller J.Comput Mater Sci,1995; 6:15
[26]Press W H,Flannery B P,Teukolsky S A,Vetterling W T.Numerical Recipes.New York,NY:Cambridge University Press,1986
[27]Culot P,Dive G,Nguyen V H,Ghuysen J M.Theor Chim Acta,1992; 82:189
[28]Neugebauer J,Scheffler M.Phys Rev,1992; 46B:16067
[29]Monkhorst H J,Pack J D.Phys Rev,1976; 13B:5188
[30]Brandes E A.Smithells Metal Reference Book.6th ed.,London:Butterworth,1983
[31]Yu R,He L L,Ye H Q.Phys Rev,2002; 65B:184102
[32]Yourdshahyan Y,Razaznejad B,Lundqvist B I.Solid State Commun,2001; 117:531
[33]Bujor M,Larson L A,Poppa H.J Vac Sci Technol,1982;20:392
[34]Hana D J.J Vac Sci Technol,1976; 13:471
[35]Vaquila I,Passeggi M C G,Ferr(?)n J.Surf Sci,1993; 292:L795
[36]Liu L M,Wang S Q,Ye H Q.Acta Mater,2004; 52:3681
[37]Weast R C.CRC Handbook of Chemistry and Physics.70th ed.,Boca Raton,Florida:CRC Press,1990
[38]Liu L M,Wang S Q,Ye H Q.Surf Sci,2004; 550:46
[1] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[2] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[3] LIU Laidi, DING Biao, REN Weili, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature[J]. 金属学报, 2023, 59(3): 387-398.
[4] LI Xin, JIANG He, YAO Zhihao, DONG Jianxin. Theoretical Calculation and Analysis of the Effect of Oxygen Atom on the Grain Boundary of Superalloy Matrices Ni, Co and NiCr[J]. 金属学报, 2023, 59(2): 309-318.
[5] XU Wenguo, HAO Wenjiang, LI Yingju, ZHAO Qingbin, LU Bingyu, GUO Heyi, LIU Tianyu, FENG Xiaohui, YANG Yuansheng. Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy[J]. 金属学报, 2023, 59(12): 1547-1558.
[6] JIN Xinyan, CHU Shuangjie, PENG Jun, HU Guangkui. Effect of Dew Point on Selective Oxidation and Decarburization of 0.2%C-1.5%Si-2.5%Mn High Strength Steel Sheet During Continuous Annealing[J]. 金属学报, 2023, 59(10): 1324-1334.
[7] HU Min, ZHOU Shengyu, GUO Jingyuan, HU Minghao, LI Chong, LI Huijun, WANG Zumin, LIU Yongchang. Oxidation Behavior of Micro-Regions in Multiphase Ni3Al-Based Superalloys[J]. 金属学报, 2023, 59(10): 1346-1354.
[8] CONG Hongda, WANG Jinlong, WANG Cheng, NING Shen, GAO Ruoheng, DU Yao, CHEN Minghui, ZHU Shenglong, WANG Fuhui. A New Design Inorganic Silicate Composite Coating and Its Oxidation Behavior at High Temperature in Steam Atmosphere[J]. 金属学报, 2022, 58(8): 1083-1092.
[9] XIE Leipeng, SUN Wenyao, CHEN Minghui, WANG Jinlong, WANG Fuhui. Effects of Processing on Microstructures and Properties of FGH4097 Superalloy[J]. 金属学报, 2022, 58(8): 992-1002.
[10] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[11] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
[12] PENG Jun, JIN Xinyan, ZHONG Yong, WANG Li. Influence of Substrate Surface Structure on the Galvanizability of Fe-16Mn-0.7C-1.5Al TWIP Steel Sheet[J]. 金属学报, 2022, 58(12): 1600-1610.
[13] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[14] CAO Chao, JIANG Chengyang, LU Jintao, CHEN Minghui, GENG Shujiang, WANG Fuhui. Corrosion Behavior of Austenitic Stainless Steel with Different Cr Contents in 700oC Coal Ash/High Sulfur Flue-Gas Environment[J]. 金属学报, 2022, 58(1): 67-74.
[15] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
No Suggested Reading articles found!