Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (8): 810-814     DOI:
Research Articles Current Issue | Archive | Adv Search |
IN SITU STUDY OF MARTENSITE TRANSFORMATION , PLASTIC DEFORMATION AND CRACK NUCLEATION FOR NI2MNGA FERROMAGNETIC SHAPE MEMORY ALLOY
;;;;
北京科技大学
Cite this article: 

. IN SITU STUDY OF MARTENSITE TRANSFORMATION , PLASTIC DEFORMATION AND CRACK NUCLEATION FOR NI2MNGA FERROMAGNETIC SHAPE MEMORY ALLOY. Acta Metall Sin, 2006, 42(8): 810-814 .

Download:  PDF(2340KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The interrelationship of crack nucleation to martensite transformation and plastic deformation has been studied in situ using a differential interference constrast (DIC) microscopy for a notched sample of Ni2MnGa ferromagnetic shape memory alloy . The result showed that martensites form firstly during loading and there was a plastic zone when stress concentration ahead of a crack is large enough . Microcrack initiated preferentially along the interface of martensite , but also initiated in the plastic zone . With increasing the load , microcracks initiated discontinuously along the martensites and connected through shear microcracks in the ligaments , resulting in a resistance curve increase behavior .
Key words:  Ni2MnGa      in situ tension      martensite      plastic zone      crack initiation      
Received:  05 December 2005     
ZTFLH:  TG115.2  
  TG139  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I8/810

[1]Sozinov A,Likhachev A A,Lanska N,Ullakko K.Appl Phys Lett,2002;80:1746
[2]Murray S J,O'Handley R C,Allen S M.J Appl Phys,2001;89:1295
[3]Chernenko V A,L'vov V,Pons J,Cesari E.J Appl Phys,2003;93:2394
[4]Deng L F,Li Y,Jiang C B,Xu H B.Acta Metall Sin,2004;40:1290 (邓丽芬,李岩,蒋成保,徐惠彬.金属学报,2004;40:1290)
[5]Chu W Y,Thompson A W.Metall Trans,1992;23A:1299
[6]Lu Y H,Zhang Y G,Qiao L J,Chu W Y.Intermetallics,2000;8:1443
[7]Miyazaki S,Totsuka K.ISIJ Int,1989;29:353
[8]Lu Y H,Qiao L J,Chu W Y.Sci China,2001;44A:932
[9]Lu Y H,Qiao L J,Chu W Y.Fatigue Fract Eng Mater Struct,2002;25:509
[10]Chu W Y,Qiao L J,Chen Q Z,Gao K W.Fracture and Environment Fracture.Beijing:Science Press,2000:5 (褚武扬,乔利杰,陈奇志,高克玮.断裂与环境断裂.北京:科学出版社,2000:5)P
[1] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[2] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[3] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[4] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[5] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[6] ZHU Bin, YANG Lan, LIU Yong, ZHANG Yisheng. Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation[J]. 金属学报, 2022, 58(2): 155-164.
[7] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[8] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[9] WANG Yu, HU Bin, LIU Xingyi, ZHANG Hao, ZHANG Haoyun, GUAN Zhiqiang, LUO Haiwen. Influence of Annealing Temperature on Both Mechanical and Damping Properties of Nb-Alloyed High Mn Steel[J]. 金属学报, 2021, 57(12): 1588-1594.
[10] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[11] WANG Shihong,LI Jian,GE Xin,CHAI Feng,LUO Xiaobing,YANG Caifu,SU Hang. Microstructural Evolution and Work Hardening Behavior of Fe-19Mn Alloy Containing Duplex Austenite and ε-Martensite[J]. 金属学报, 2020, 56(3): 311-320.
[12] ZHU Jian, ZHANG Zhihao, XIE Jianxin. Plastic Deformation Behavior and Fracture Mechanism of Rare Earth H13 Steel Based on In Situ TEM Tensile Study[J]. 金属学报, 2020, 56(12): 1592-1604.
[13] Miao JIN, Wenquan LI, Shuo HAO, Ruixue MEI, Na LI, Lei CHEN. Effect of Solution Temperature on Tensile Deformation Behavior of Mn-N Bearing Duplex Stainless Steel[J]. 金属学报, 2019, 55(4): 436-444.
[14] CHEN Lei, HAO Shuo, ZOU Zongyuan, HAN Shuting, ZHANG Rongqiang, GUO Baofeng. Mechanical Characteristics of TRIP-Assisted Duplex Stainless Steel Fe-19.6Cr-2Ni-2.9Mn-1.6Si During Cyclic Deformation[J]. 金属学报, 2019, 55(12): 1495-1502.
[15] Kuanhui HU, Xinping MAO, Guifeng ZHOU, Jing LIU, Zhifen WANG. Effect of Si and Mn Contents on the Microstructure and Mechanical Properties of Ultra-High Strength Press Hardening Steel[J]. 金属学报, 2018, 54(8): 1105-1112.
No Suggested Reading articles found!