Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (8): 805-809     DOI:
Research Articles Current Issue | Archive | Adv Search |
IN-SITU OBSERVATION OF NUCLEATION AND GROWTH OF HIGH-TEMPERATURE δ PHASE DURING AUSTENITE → FERRITE+LIQUID PHASE TRANSFORMATION IN AN AISI304 STAINLESS STEEL
Gaofei Liang;;
上海宝钢技术中心前沿技术研究所
Cite this article: 

Gaofei Liang. IN-SITU OBSERVATION OF NUCLEATION AND GROWTH OF HIGH-TEMPERATURE δ PHASE DURING AUSTENITE → FERRITE+LIQUID PHASE TRANSFORMATION IN AN AISI304 STAINLESS STEEL. Acta Metall Sin, 2006, 42(8): 805-809 .

Download:  PDF(4065KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The nucleation and growth behaviors of high-temperature δ during austenite (γ) → ferrite (δ) + liquid (L) phase transformation in an AISI30 stainless steel have been observed in-situ by using a confocal laser scanning microscope. The results show that δ appears prior from the γ crystal boundary at the temperature range from 1300 to 1400 0C, and appears at full blast in the γ gains above 1410 0C. The γ→δ+L phase transformation is controlled mainly the diffusion of Ni atoms near the γ/δ/L phase interface. With the increment of temperature risen rate, the size of δ gain decreases, the δ/γ planer interface becomes unstable, and a certain secondary branch appears. The δ grows mainly in the non-faceted style at first. Twin-crystal is the key shape of the sidestep forming in the δ/γ interface. The faceted δ trends to passivate its edge and transfers to non-faceted style with the γ →δ+L phase transformation. The mechanisms of the growth interface instability for δ are discussed by using the critical wavelength to stabilize a planar interface theory. The transformation reason for growth style of δ is analyzed by using the crystal dynamics theory.
Key words:  AISI 304 stainless steel      confocal laser scanning microscope      ferrite      austenite      in-situ observation      
Received:  03 November 2005     
ZTFLH:  TG113  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I8/805

[1]Allan G K.Iron Steel Making,1995;22:465
[2]Yin H,Emi T,Shibata H.Acta Mater,1999;47:1523
[3]Dippenaar R,Phelan D.Metall Mater Trans,2003;34B:495
[4]Phelan D,Dippenaar R.ISIJ Int,2004;44:414
[5]Phelan D,Dippenaar R.Metall Mater Trans,2004;35A:3701
[6]McDonald N,Sridha S.JOM,2004;56:182
[7]Hu G X,Cai X.Materials Science Foundation.Shanghai:Shanghai Jiaotong University Press,2000:131(胡赓祥,蔡珣.材料科学基础.上海:上海交通大学出版社,2000:131)
[8]Hu H Q.Metal Solidification.Beijing:Metallurgical Industry Press,1985:93(胡汉起.金属凝固.北京:冶金工业出版社,1985:93)G
[1] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[2] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[3] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[4] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[5] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[6] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
[7] SHEN Guohui, HU Bin, YANG Zhanbing, LUO Haiwen. Influence of Tempering Temperature on Mechanical Properties and Microstructures of High-Al-Contained Medium Mn Steel Having δ-Ferrite[J]. 金属学报, 2022, 58(2): 165-174.
[8] PENG Jun, JIN Xinyan, ZHONG Yong, WANG Li. Influence of Substrate Surface Structure on the Galvanizability of Fe-16Mn-0.7C-1.5Al TWIP Steel Sheet[J]. 金属学报, 2022, 58(12): 1600-1610.
[9] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[10] JIANG Zhonghua, DU Junyi, WANG Pei, ZHENG Jianneng, LI Dianzhong, LI Yiyi. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. 金属学报, 2021, 57(7): 891-902.
[11] LIU Man, HU Haijiang, TIAN Junyu, XU Guang. Effect of Ausforming on the Microstructures and Mechanical Properties of an Ultra-High Strength Bainitic Steel[J]. 金属学报, 2021, 57(6): 749-756.
[12] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
[13] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[14] XU Wei,HUANG Minghao,WANG Jinliang,SHEN Chunguang,ZHANG Tianyu,WANG Chenchong. Review: Relations Between Metastable Austenite and Fatigue Behavior of Steels[J]. 金属学报, 2020, 56(4): 459-475.
[15] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
No Suggested Reading articles found!