Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (11): 1217-1220     DOI:
Research Articles Current Issue | Archive | Adv Search |
Influence of Precipitated Direction of the Second Phase on Shape Memory
WEN Yuhua; ZHANG Wei ; LI Ning; XIE Wenling; WANG Shanhua
College of Manufacturing Science and Engineering; Sichuan University;
Cite this article: 

WEN Yuhua; ZHANG Wei; LI Ning; XIE Wenling; WANG Shanhua. Influence of Precipitated Direction of the Second Phase on Shape Memory. Acta Metall Sin, 2006, 42(11): 1217-1220 .

Download:  PDF(806KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  To develop Fe-based shape memory alloys with high revovery strain free of training, the effects of direct ageing and strain ageing on the precipitation of second phases, the martensite transformation and the shape memory effect in an Fe-13.53Mn-4.86Si-8.16Cr-3.82Ni-0.16C alloy were investigated. The analysis of SEM and X-ray diffraction showed that after ageing lots of Cr23C6 precipitated and the precipitation of second phases through direct aging is unidirectional, while the precipitation of second phases through strain ageing is directional. At the same aging time, the amount of second phases through strain ageing is much more than that through the direct ageing, and the size of second phases is half of that through the direct ageing. The shape memory effect can be remarkably improved through both the strain ageing and strain ageing at the optimal aging time. The shape memory effect after strain ageing is much better than that after the direct aging at the same aging time. The Fe-based shape memory alloys with high revovery strain free of training can be fabricated through controlling the precipitation with direction of second phases.
Key words:  Shape memory alloy      Shape memory effect      Ageing      Carbides      Directional precipitation      
Received:  06 March 2006     
ZTFLH:  TG139.6  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I11/1217

[1] Sato A, Soma K, Mori T. Acta Metall, 1982; 30: 1901
[2] Ostuka H, Yamada H, Maruyama T, Tanahashi H, Matsuda S, Murakaami M. Trans Iron Steel Inst Jpn, 1990; 30: 674
[3] Rong L J, Ping D H, Li Y Y, Shi C X. Scr Metall Mater, 1995; 32: 1905
[4] Kajiwara S. Mater Sci Eng, 1999; A273-275: 67
[5] Wan J F, Huang X, Chen S P, Hsu T Y. Mater Trans, 2002; 43: 920
[6] Liu D Z, Kajiwara S, Kikuchi T, Shinya N. Philos Mag, 2003; 83A: 2875
[7] Wen Y H, Yan M, Li N. Scr Mater, 2004; 50: 441
[8] Wen Y H, Yan M, Li N. Acta Metall Sin, 2004; 40: 72 (文玉华,严密,李宁.金属学报,2004;40:72)
[9] Matsumura O, Furusako S, Sumi T, Furukawa T, Otsuka H. Mater Sci Eng, 1999; A272: 459
[10] Wang Z, Cai W, Zhao L C. J Mater Sci Technol, 1998; 14: 182
[11] Kajiwara S, Liu D, Kikuchi T, Shinya N. Scr Mater, 2001; 44: 2809
[12] Pan J S, Tong J M, Tian M B. Elements of Materials Science. Beijing: Tsinghua University Press, 1998: 590 (潘金生,仝健民,田民波.材料科学基础.北京:清华大学出版社,1998:590)
[1] CHEN Fei, QIU Pengcheng, LIU Yang, SUN Bingbing, ZHAO Haisheng, SHEN Qiang. Microstructure and Mechanical Properties of NiTi Shape Memory Alloys by In Situ Laser Directed Energy Deposition[J]. 金属学报, 2023, 59(1): 180-190.
[2] YANG Chao, LU Haizhou, MA Hongwei, CAI Weisi. Research and Development in NiTi Shape Memory Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 55-74.
[3] ZHANG Xin, CUI Bo, SUN Bin, ZHAO Xu, ZHANG Xin, LIU Qingsuo, DONG Zhizhong. Effect of Y Element on the Properties of Cu-Al-Ni High Temperature Shape Memory Alloy[J]. 金属学报, 2022, 58(8): 1065-1071.
[4] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Lüders-Like Deformation and Stress Transfer Behavior in an In Situ NiTi-NbTi Composite[J]. 金属学报, 2021, 57(7): 921-927.
[5] WANG Xue, LI Yong, WANG Jiaqing, HU Lei. Effect of High Temperature Ageing on Microstructure and Stress-Relief Cracking Susceptibility of Coarse Grain Heat Affected Zone in T23 steel[J]. 金属学报, 2021, 57(6): 736-748.
[6] YE Junjie, HE Zhirong, ZHANG Kungang, DU Yuqing. Effect of Ageing on Microsturcture, Tensile Properties, and Shape Memory Behaviors of Ti-50.8Ni-0.1Zr Shape Memory Alloy[J]. 金属学报, 2021, 57(6): 717-724.
[7] LIU Chao, YAO Zhihao, GUO Jing, PENG Zichao, JIANG He, DONG Jianxin. Microstructure Evolution Behavior of Powder Superalloy FGH4720Li at Near Service Temperature[J]. 金属学报, 2021, 57(12): 1549-1558.
[8] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[9] GUO Qianying, LI Yanmo, CHEN Bin, DING Ran, YU Liming, LIU Yongchang. Effect of High-Temperature Ageing on Microstructure and Creep Properties of S31042 Heat-Resistant Steel[J]. 金属学报, 2021, 57(1): 82-94.
[10] XIAO Fei, CHEN Hong, JIN Xuejun. Research Progress in Elastocaloric Cooling Effect Basing on Shape Memory Alloy[J]. 金属学报, 2021, 57(1): 29-41.
[11] LI Jichen, FENG Di, XIA Weisheng, LIN Gaoyong, ZHANG Xinming, REN Minwen. Effect of Non-Isothermal Ageing on Microstructure and Properties of 7B50 Aluminum Alloy[J]. 金属学报, 2020, 56(9): 1255-1264.
[12] PENG Yanyan, YU Liming, LIU Yongchang, MA Zongqing, LIU Chenxi, LI Chong, LI Huijun. Effect of Ageing Treatment at 650 ℃ on Microstructure and Properties of 9Cr-ODS Steel[J]. 金属学报, 2020, 56(8): 1075-1083.
[13] ZHU Liang, GUO Mingxing, YUAN Bo, ZHUANG Linzhong, ZHANG Jishan. Effect of Ageing Routes on Precipitation Behaviors of Al-0.7Mg-0.5Si-0.2Cu-0.5Zn Alloy[J]. 金属学报, 2020, 56(7): 997-1006.
[14] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[15] LIANG Mengchao, CHEN Liang, ZHAO Guoqun. Effects of Artificial Ageing on Mechanical Properties and Precipitation of 2A12 Al Sheet[J]. 金属学报, 2020, 56(5): 736-744.
No Suggested Reading articles found!