Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (9): 1255-1264    DOI: 10.11900/0412.1961.2020.00004
Current Issue | Archive | Adv Search |
Effect of Non-Isothermal Ageing on Microstructure and Properties of 7B50 Aluminum Alloy
LI Jichen1, FENG Di1,2(), XIA Weisheng2, LIN Gaoyong3, ZHANG Xinming3, REN Minwen1
1 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2 School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
3 School of Materials Science and Engineering, Central South University, Changsha 410083, China
Download:  HTML  PDF(4533KB) 
Export:  BibTeX | EndNote (RIS)      

Due to the temperature rising or cooling stage in thick plate, non-isothermal ageing has been the research hotspot of heat treatment for Al-Zn-Mg-Cu alloy thick plate. It is possible to replace the isothermal ageing by non-isothermal one because of the high efficiency and practicability. As one of the Al-Zn-Mg-Cu alloy, 7B50 aluminum alloy and its thick plate have supposed to manufacture the wing in "Yun-20" big plane. In this work, hardness test, electrical conductivity test, room temperature tensile test, DSC analysis, exfoliation corrosion test and TEM observation were used to study the influence of non-isothermal ageing on microstructure and corrosion resistance of 7B50 aluminum alloy hot rolling thick plate. Results revealed that, after 480 ℃, 1 h solution and quenched in room temperature water, followed by ageing from room temperature to 215 ℃ at 1 ℃/min heating rate, and furnace cooling to room temperature immediately, the inner precipitates of 7B50 aluminum alloy are fine and dispersed while the ones on grain boundary are coarsened and discontinuous. The tensile strength and exfoliation corrosion grade reached to 605 MPa and EB level, respectively. Comprehensive performance of 7B50 aluminum alloy are excellent overall those of isothermal peak ageing (T6) or isothermal double stages over ageing (T76), but similar to that of retrogression and re-ageing (RRA) treatment. The non-isothermal ageing realized the short process preparation and the measure removing isothermal stage is more suitable for thick plates.

Key words:  7B50 aluminum alloy      non-isothermal ageing      strength      exfoliation corrosion property     
Received:  02 January 2020     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(51801082);Natural Science Foundation of Jiangsu Province(BK20160560);Undergraduate Innovation and Entrepreneurship Training Program of Jiangsu Province(201910289095Y)
Corresponding Authors:  FENG Di     E-mail:

Cite this article: 

LI Jichen, FENG Di, XIA Weisheng, LIN Gaoyong, ZHANG Xinming, REN Minwen. Effect of Non-Isothermal Ageing on Microstructure and Properties of 7B50 Aluminum Alloy. Acta Metall Sin, 2020, 56(9): 1255-1264.

URL:     OR

Fig.1  Non-isothermal ageing (NIT) routing
Fig.2  The hardness and electrical conductivity evolution curves during non-isothermal ageing of 7B50 aluminum alloy
Fig.3  Room temperature tensile properties of 7B50 aluminum alloy under different ageing states (Rm—tensile strength, Rp0.2—yield strength, A—elongation)
Fig.4  Bright field TEM images and corresponding SAED patterns along [001]Al (insets) of precipitates in matrix of 7B50 aluminum alloy under ageing states of H160 (a), H215 (b), C25 (c), RRA (d), T6 (e) and T76 (f) (GP—Guinier-Preston zone)
Fig.5  Bright field TEM images of precipitates on the grain boundary of 7B50 aluminum alloy under ageing states of H160 (a), H215 (b), C25 (c), RRA (d), T6 (e) and T76 (f) (PFZ—precipitation free zone )
Fig.6  The exfoliation corrosion morphologies of various ageing states after different etching time
Fig.7  Scheil integral-heating time curve of 7B50 aluminum alloy during non-isothermal heating ageing (S—Scheil integral value of different ageing schedules, Sc—Scheil integral value of a reference ageing schedule)
Fig.8  DSC curves of 7B50 aluminum alloy under different ageing states
[1] Feng D, Zhang X M, Chen H M, et al. Effect of non-isothermal retrogression and re-ageing on microstructure and properties of Al-8Zn-2Mg-2Cu alloy thick plate [J]. Acta Metall. Sin., 2018, 54: 100
(冯 迪, 张新明, 陈洪美等. 非等温回归再时效对Al-8Zn-2Mg-2Cu合金厚板组织及性能的影响 [J]. 金属学报, 2018, 54: 100)
[2] Rometsch P A, Zhang Y, Knight S. Heat treatment of 7xxx series aluminium alloys—Some recent developments [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 2003
[3] Zhang X M, Deng Y L, Zhang Y. Development of high strength aluminum alloys and processing techniques for the materials [J]. Acta Metall. Sin., 2015, 51: 257
(张新明, 邓运来, 张 勇. 高强铝合金的发展及其材料的制备加工技术 [J]. 金属学报, 2015, 51: 257)
[4] Cina B M. Reducing the susceptibility of alloys, particularly aluminium alloys, to stress corrosion cracking [P]. US Pat, 3856584, 1974
[5] Ø Grong, Shercliff H R. Microstructural modelling in metals processing [J]. Prog. Mater. Sci., 2002, 47: 163
[6] Hutchinson C R, Gouné M, Redjaïmia A. Selecting non-isothermal heat treatment schedules for precipitation hardening systems: An example of coupled process-property optimization [J]. Acta Mater., 2007, 55: 213
[7] Feng D, Zhang X M, Liu S D, et al. The effect of pre-ageing temperature and retrogression heating rate on the microstructure and properties of AA7055 [J]. Mater. Sci. Eng., 2013, A588: 34
[8] Li K, Zhang K, Yang L, et al. Investigation of non-isothermal aging process of 7085 aluminum alloy [A]. Proceedings of the 12th International Conference on Aluminium Alloys [C]. Yokohama, Japan: The Japan Institute of Light Metals, 2010: 2120
[9] Tang Q J. Study on cooling ageing process of 7A85 aluminum alloy [D]. Harbin: Harbin Institute of Technology, 2010
(唐秋菊. 7A85铝合金降温时效工艺的研究 [D]. 哈尔滨: 哈尔滨工业大学, 2010)
[10] Jiang J T, Tang Q J, Yang L, et al. Non-isothermal ageing of an Al-8Zn-2Mg-2Cu alloy for enhanced properties [J]. J. Mater. Process. Technol., 2016, 48: 110
[11] Liu Y, Jiang D M, Li B Q, et al. Heating aging behavior of Al-8.35Zn-2.5Mg-2.25Cu alloy [J]. Mater. Des., 2014, 60: 116
[12] Peng X Y, Guo Q, Liang X P, et al. Mechanical properties, corrosion behavior and microstructures of a non-isothermal ageing treated Al-Zn-Mg-Cu alloy [J]. Mater. Sci. Eng., 2017, A688: 146
[13] Liu Y, Liang S, Jiang D M. Influence of repetitious non-isothermal aging on microstructure and strength of Al-Zn-Mg-Cu alloy [J]. J. Alloys Compd., 2016, 689: 632
doi: 10.1016/j.jallcom.2016.08.017
[14] AMS 4252B-2005 Aluminum alloy, plate 6.4Zn-2.4Mg-2.2Cu-0.12Zr (7150-T7751) solution heat treated, stress relieved, and overaged [S]. 2005
[15] Feng D, Zhang X M, Liu S D, et al. Effect of pre-aging temperature and retrogression heating rate on microstructure and properties of 7150 alloy [J]. Chin. J. Nonferrous Met., 2013, 23: 1173
(冯 迪, 张新明, 刘胜胆等. 预时效温度及回归加热速率对7150铝合金显微组织及性能的影响 [J]. 中国有色金属学报, 2013, 23: 1173)
[16] Xu D, Li Z H, Wang G J, et al. Phase transformation and microstructure evolution of an ultra-high strength Al-Zn-Mg-Cu alloy during homogenization [J]. Mater. Charact., 2017, 131: 285
doi: 10.1016/j.matchar.2017.07.011
[17] Azarniya A, Taheri A K, Taheri K K. Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective [J]. J. Alloys Compd., 2019, 781: 945
doi: 10.1016/j.jallcom.2018.11.286
[18] Jiang D M, Liu Y, Liang S, et al. The effects of non-isothermal aging on the strength and corrosion behavior of Al-Zn-Mg-Cu alloy [J]. J. Alloys Compd., 2016, 681: 57
doi: 10.1016/j.jallcom.2016.04.208
[19] Liu L L, Pan Q L, Wang X D, et al. The effects of aging treatments on mechanical property and corrosion behavior of spray formed 7055 aluminium alloy [J]. J. Alloys Compd., 2018, 735: 261
doi: 10.1016/j.jallcom.2017.11.070
[20] BjØrneklett B I, Ø Grong, Myhr O R, et al. Additivity and isokinetic behaviour in relation to particle dissolution [J]. Acta Mater., 1998, 46: 6257
doi: 10.1016/S1359-6454(98)00260-2
[21] Ø Grong, Myhr O R. Additivity and isokinetic behaviour in relation to diffusion controlled growth [J]. Acta Mater., 2000, 48: 445
doi: 10.1016/S1359-6454(99)00360-2
[22] Myhr O R, Ø Grong. Modelling of non-isothermal transformations in alloys containing a particle distribution [J]. Acta Mater., 2000, 48: 1605
doi: 10.1016/S1359-6454(99)00435-8
[23] Khalfallah A, Raho A A, Amzert S, et al. Precipitation kinetics of GP zones, metastable η′ phase and equilibrium η phase in Al-5.46wt.%Zn-1.67wt.%Mg alloy [J]. Trans. Nonferrous Met. Soc. China, 2019, 29: 233
[24] Su R M, Qu Y D, Li R D. Pre-aging of retrogression and re-aging of spray formed 7075 alloy [J]. Acta Metall. Sin., 2014, 50: 863
(苏睿明, 曲迎东, 李荣德. 喷射态7075合金回归再时效中预时效的研究 [J]. 金属学报, 2014, 50: 863)
[25] Panigrahi S K, Jayaganthan R. Influence of solutes and second phase particles on work hardening behavior of Al 6063 alloy processed by cryorolling [J]. Mater. Sci. Eng., 2011, A528: 3147
[26] Han N M, Zhang X M, Liu S D, et al. Effects of pre-stretching and ageing on the strength and fracture toughness of aluminum alloy 7050 [J]. Mater. Sci. Eng., 2011, A528: 3714
[1] CHEN Junzhou, LV Liangxing, ZHEN Liang, DAI Shenglong. Precipitation Strengthening Model of AA 7055 Aluminium Alloy[J]. 金属学报, 2021, 57(3): 353-362.
[2] ZHU Wenting, CUI Junjun, CHEN Zhenye, FENG Yang, ZHAO Yang, CHEN Liqing. Design and Performance of 690 MPa Grade Low-Carbon Microalloyed Construction Structural Steel with High Strength and Toughness[J]. 金属学报, 2021, 57(3): 340-352.
[3] LU Bin, CHEN Furong, ZHI Jianguo, GENG Ruming. Enhanced Welding Properties of High Strength Steel via Rare Earth Oxide Metallurgy Technology[J]. 金属学报, 2020, 56(9): 1206-1216.
[4] ZHANG Lin, GUO Xiao, GAO Jianwen, DENG Anyuan, WANG Engang. Effect of Electromagnetic Stirring on Microstructure and Mechanical Properties of TiB2 Particle-Reinforced Steel[J]. 金属学报, 2020, 56(9): 1239-1246.
[5] HAN Baoshuai, WEI Lijun, XU Yanjin, MA Xiaoguang, LIU Yafei, HOU Hongliang. Effect of Pre-Deformation on Microstructure and Mechanical Properties of Ultra-High Strength Al-Zn-Mg-Cu Alloy After Ageing Treatment[J]. 金属学报, 2020, 56(7): 1007-1014.
[6] ZHOU Hongwei, BAI Fengmei, YANG Lei, CHEN Yan, FANG Junfei, ZHANG Liqiang, YI Hailong, HE Yizhu. Low-Cycle Fatigue Behavior of 1100 MPa Grade High-Strength Steel[J]. 金属学报, 2020, 56(7): 937-948.
[7] ZHU Liang, GUO Mingxing, YUAN Bo, ZHUANG Linzhong, ZHANG Jishan. Effect of Ageing Routes on Precipitation Behaviors of Al-0.7Mg-0.5Si-0.2Cu-0.5Zn Alloy[J]. 金属学报, 2020, 56(7): 997-1006.
[8] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[9] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[10] WANG Cunyu,CHANG Ying,ZHOU Fengluan,CAO Wenquan,DONG Han,WENG Yuqing. M3 Microstructure Control Theory and Technology of the Third-Generation Automotive Steels with HighStrength and High Ductility[J]. 金属学报, 2020, 56(4): 400-410.
[11] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[12] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[13] ZHANG Zhefeng,SHAO Chenwei,WANG Bin,YANG Haokun,DONG Fuyuan,LIU Rui,ZHANG Zhenjun,ZHANG Peng. Tensile and Fatigue Properties and Deformation Mechanisms of Twinning-Induced Plasticity Steels[J]. 金属学报, 2020, 56(4): 476-486.
[14] PENG Yun,SONG Liang,ZHAO Lin,MA Chengyong,ZHAO Haiyan,TIAN Zhiling. Research Status of Weldability of Advanced Steel[J]. 金属学报, 2020, 56(4): 601-618.
[15] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
No Suggested Reading articles found!