|
|
Finite Element Simulation of the Effect of Welding Residual Stress on Hydrogen Diffusion |
JIANG Wenchun; GONG Jianming; TANG Jianqun; CHEN Hu; TU Shandong |
College of Mechanical and Power Engineering; Nanjing University of Technology; Nanjing 210009 |
|
Cite this article:
JIANG Wenchun; GONG Jianming; TANG Jianqun; CHEN Hu; TU Sh; ong. Finite Element Simulation of the Effect of Welding Residual Stress on Hydrogen Diffusion. Acta Metall Sin, 2006, 42(11): 1221-1226 .
|
Abstract A sequential coupling calculating method on hydrogen diffusion had been developed based on the finite element program-ABAQUS. Using this method, effect of welding residual stress on the hydrogen diffusion was numerically simulated for the as-weld condition and postweld heat treatment (PWHT) condition. The diffusion without the effect of stress was also taken into account and compared with those with stress. The results show that hydrogen will diffuse and accumulate in the higher stress region under the existence of welding residual stress gradient. A low hydrogen concentration valley exists near the heat-affected zone(HAZ), which is caused by the long-range diffusion of hydrogen to the high stress zone. After the PWHT, stress relaxation is obvious and the maximum stress is decreased about 50%, which influences the hydrogen diffusion and makes the hydrogen concentration be decreased about 40%. Therefore, decrease in the welding residual stress by PWHT can effectively reduce the hydrogen concentration in the weldment and the susceptibility of material to environment hydrogen cracking.
|
Received: 12 May 2006
|
|
[1] Zhang Y R, Dong C F, Li X G, Rui X L, Zhou H R. Acta Metall Sin, 2006; 42: 521 (张颖瑞,董超芳,李晓钢,芮晓龙,周和荣.金属学报,2006; 42:521) [2] Guo H, Li G F, Cai X, Yang W. Acta Metall Sin, 2004; 40: 967 (郭浩,李光福,蔡殉,杨武.金属学报,2004;40:967) [3] Tang J Q, Gong J M, Zhang L J. Corros Sci Prot Technol, 2005; 17: 432 (唐建群,巩建鸣,张礼敬.腐蚀科学与防护技术, 2005;17: 432) [4] Rogante M, Battistella P, Cesari F. Int J Hydrogen Energy, 2006; 31: 597 [5] Tang J Q, Gong J M, Zhang X C, Tu S T. Eng Failure Anal, 2006; 13: 1057 [6] Pandey R K. Eng Failure Anal, 2005; 12: 376 [7] Nyborg R. ASTM STP, 1994: 27 [8] Xue J R. Trans Chin Weld Inst, 1998; 19: 263 (薛继仁.焊接学报,1998;19:263) [9]Zhang T,Yao Y,Chu W Y,Qiao L J.Acta Metall Sin, 2002;38:844 (张涛,姚远,褚武扬,乔利杰.金属学报.2002;38:844) [10] Turnbull A, Ferriss D H. Structural Materials: Properties, Microstructure and Processing, 1996; 206(1): 1 [11] Hughey, Michael P, Cook, Robert F. Appl Phys Lett, 2004; 85: 404 [12] Quan G F. J Chin Soc Corros Prot. 1993; 13: 80 (权高峰.中国腐蚀与防护学报, 1993;13:80 [13] Zhao X W, Su Y J, Gao K W, Qiao L J, Chu W Y, Xu Y. Acta Metall Sin, 2005; 41: 173 (赵显武,宿彦京,高克玮,乔利杰,褚武扬.许颖.金属学报,2005;41:173) [14] Zhang X H, Chen P Y, Tan C Y. Trans Chin Weld Inst, 2002; 23(2): 9 (张显辉,陈佩寅,谭长瑛.焊接学报,2002;23(2):9) [15] Zhang X H, Chen P Y, Tan C Y. Trans Chin Weld Inst, 2000; 21(3): 51 (张显辉,陈佩寅,谭长瑛.焊接学报, 2000;21(3):51) [16] Li Y J, Wang Q. J Mater Proc Technol, 2005; 161(3): 423 [17] Hibbit K. ABAQUS User Manual, 2003 [18] Hirth J P. Metall Trans, 1980; 11A: 861 [19] Teng T L, Lin C C. Int J Pres Vessels Piping, 1998; 75: 857 [20] Li M S, Xie X, Wang L F, Gao L X. Pressure Vessel Technol, 2003; 20(11): 18 (李萌盛,谢霞,王丽芳,高丽霞.压力容器,2003;20(11): 18) [21] Zhao L. Corros Sci Prot Technol, 2005; 17: 349 (赵亮.腐蚀科学与防护技术,2005;17:349) [22] Wang F K. Weldment Structure Engineering Analysis of Pressure Vessel. Beijing: Chemical Industry Press, 1998: 20 (王福宽.压力容器焊接结构工程分析.北京:化学工业出版社, 1998:20) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|