Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (11): 1221-1226     DOI:
Research Articles Current Issue | Archive | Adv Search |
Finite Element Simulation of the Effect of Welding Residual Stress on Hydrogen Diffusion
JIANG Wenchun; GONG Jianming; TANG Jianqun; CHEN Hu; TU Shandong
College of Mechanical and Power Engineering; Nanjing University of Technology; Nanjing 210009
Cite this article: 

JIANG Wenchun; GONG Jianming; TANG Jianqun; CHEN Hu; TU Sh; ong. Finite Element Simulation of the Effect of Welding Residual Stress on Hydrogen Diffusion. Acta Metall Sin, 2006, 42(11): 1221-1226 .

Download:  PDF(901KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A sequential coupling calculating method on hydrogen diffusion had been developed based on the finite element program-ABAQUS. Using this method, effect of welding residual stress on the hydrogen diffusion was numerically simulated for the as-weld condition and postweld heat treatment (PWHT) condition. The diffusion without the effect of stress was also taken into account and compared with those with stress. The results show that hydrogen will diffuse and accumulate in the higher stress region under the existence of welding residual stress gradient. A low hydrogen concentration valley exists near the heat-affected zone(HAZ), which is caused by the long-range diffusion of hydrogen to the high stress zone. After the PWHT, stress relaxation is obvious and the maximum stress is decreased about 50%, which influences the hydrogen diffusion and makes the hydrogen concentration be decreased about 40%. Therefore, decrease in the welding residual stress by PWHT can effectively reduce the hydrogen concentration in the weldment and the susceptibility of material to environment hydrogen cracking.
Key words:  hydrogen diffusion      welding residual stress      heat treatment      sequential coupling      finite element simulat     
Received:  12 May 2006     
ZTFLH:  TG457  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I11/1221

[1] Zhang Y R, Dong C F, Li X G, Rui X L, Zhou H R. Acta Metall Sin, 2006; 42: 521 (张颖瑞,董超芳,李晓钢,芮晓龙,周和荣.金属学报,2006; 42:521)
[2] Guo H, Li G F, Cai X, Yang W. Acta Metall Sin, 2004; 40: 967 (郭浩,李光福,蔡殉,杨武.金属学报,2004;40:967)
[3] Tang J Q, Gong J M, Zhang L J. Corros Sci Prot Technol, 2005; 17: 432 (唐建群,巩建鸣,张礼敬.腐蚀科学与防护技术, 2005;17: 432)
[4] Rogante M, Battistella P, Cesari F. Int J Hydrogen Energy, 2006; 31: 597
[5] Tang J Q, Gong J M, Zhang X C, Tu S T. Eng Failure Anal, 2006; 13: 1057
[6] Pandey R K. Eng Failure Anal, 2005; 12: 376
[7] Nyborg R. ASTM STP, 1994: 27
[8] Xue J R. Trans Chin Weld Inst, 1998; 19: 263 (薛继仁.焊接学报,1998;19:263)
[9]Zhang T,Yao Y,Chu W Y,Qiao L J.Acta Metall Sin, 2002;38:844 (张涛,姚远,褚武扬,乔利杰.金属学报.2002;38:844)
[10] Turnbull A, Ferriss D H. Structural Materials: Properties, Microstructure and Processing, 1996; 206(1): 1
[11] Hughey, Michael P, Cook, Robert F. Appl Phys Lett, 2004; 85: 404
[12] Quan G F. J Chin Soc Corros Prot. 1993; 13: 80 (权高峰.中国腐蚀与防护学报, 1993;13:80
[13] Zhao X W, Su Y J, Gao K W, Qiao L J, Chu W Y, Xu Y. Acta Metall Sin, 2005; 41: 173 (赵显武,宿彦京,高克玮,乔利杰,褚武扬.许颖.金属学报,2005;41:173)
[14] Zhang X H, Chen P Y, Tan C Y. Trans Chin Weld Inst, 2002; 23(2): 9 (张显辉,陈佩寅,谭长瑛.焊接学报,2002;23(2):9)
[15] Zhang X H, Chen P Y, Tan C Y. Trans Chin Weld Inst, 2000; 21(3): 51 (张显辉,陈佩寅,谭长瑛.焊接学报, 2000;21(3):51)
[16] Li Y J, Wang Q. J Mater Proc Technol, 2005; 161(3): 423
[17] Hibbit K. ABAQUS User Manual, 2003
[18] Hirth J P. Metall Trans, 1980; 11A: 861
[19] Teng T L, Lin C C. Int J Pres Vessels Piping, 1998; 75: 857
[20] Li M S, Xie X, Wang L F, Gao L X. Pressure Vessel Technol, 2003; 20(11): 18 (李萌盛,谢霞,王丽芳,高丽霞.压力容器,2003;20(11): 18)
[21] Zhao L. Corros Sci Prot Technol, 2005; 17: 349 (赵亮.腐蚀科学与防护技术,2005;17:349)
[22] Wang F K. Weldment Structure Engineering Analysis of Pressure Vessel. Beijing: Chemical Industry Press, 1998: 20 (王福宽.压力容器焊接结构工程分析.北京:化学工业出版社, 1998:20)
[1] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[2] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[3] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[4] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[5] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
[6] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[7] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[8] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[9] ZHANG Jiarong, LI Yanfen, WANG Guangquan, BAO Feiyang, RUI Xiang, SHI Quanqiang, YAN Wei, SHAN Yiyin, YANG Ke. Effects of Heat Treatment on Microstructure and Mechanical Properties of a Bimodal Grain Ultra-Low Carbon 9Cr-ODS Steel[J]. 金属学报, 2022, 58(5): 623-636.
[10] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[11] YUAN Bo, GUO Mingxing, HAN Shaojie, ZHANG Jishan, ZHUANG Linzhong. Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys[J]. 金属学报, 2022, 58(3): 345-354.
[12] CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. 金属学报, 2022, 58(11): 1478-1488.
[13] WANG Di, HUANG Jinhui, TAN Chaolin, YANG Yongqiang. Review on Effects of Cyclic Thermal Input on Microstructure and Property of Materials in Laser Additive Manufacturing[J]. 金属学报, 2022, 58(10): 1221-1235.
[14] LUO Wenze, HU Long, DENG Dean. Numerical Simulation and Development of Efficient Calculation Method for Residual Stress of SUS316 Saddle Tube-Pipe Joint[J]. 金属学报, 2022, 58(10): 1334-1348.
[15] WANG Wenquan, WANG Suyu, CHEN Fei, ZHANG Xinge, XU Yuxin. Microstructure and Mechanical Properties of TiN/Inconel 718 Composites Fabricated by Selective Laser Melting[J]. 金属学报, 2021, 57(8): 1017-1026.
No Suggested Reading articles found!