Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (11): 1207-1211     DOI:
Research Articles Current Issue | Archive | Adv Search |
GRAIN SIZE OF PLATINUM NANOFILMS FABRICATED BY EB-PVD AND ITS EFFECT ON THERMAL CONDUCTIVITY
CAO Bingyang; ZHANG Qingguang; ZHANG Xing;TAKAHASHI Koji; IKUTA Tatsuya
Key laboratory for Thermal Science and Power Engineering of Ministry of Education; Department of Engineering Mechanics; Tsinghua University;Beijing 100084
Cite this article: 

CAO Bingyang; ZHANG Qingguang; ZHANG Xing; TAKAHASHI Koji; IKUTA Tatsuya. GRAIN SIZE OF PLATINUM NANOFILMS FABRICATED BY EB-PVD AND ITS EFFECT ON THERMAL CONDUCTIVITY. Acta Metall Sin, 2006, 42(11): 1207-1211 .

Download:  PDF(741KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Six platinum films with thickness 15-62 nm have been fabricated by the method of electron beam- physical vapor deposition (EB-PVD). The grain sizes of the platinum nanofilms and its effect on the thermal conductivity have been studied experimentally. It is found that the grain size increases with the nanofilm thickness increasing and goes to a constant about 20 nm. The grain size is nearly comparable with the nanofilm thickness with the thickness less than 30 nm, while becomes much less than the nanofilm thickness with the thickness larger than 30 nm. Influenced by the size effect caused by the nanofilm interface and the grain boundary effect by the grain structure, the thermal conductivity of the platinum nanofilms is greatly lower than that of the bulk platinum. It is noted that the thermal conductivity of the studied platinum nanofilms increases with the thickness increasing and runs to 35 W/mK, which is much lower than that of the bulk material due to the grain boundary effect.
Key words:  nanofilm      thermal conductivity      grain size      grain boundary effect      size effect      
Received:  24 February 2006     
ZTFLH:  TG146.3  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I11/1207

[1] Guo Y, Chang G R, Ma S L, Xu K W. Acta Metall Sin, 2005; 41: 985 (郭岩,畅庚榕,马胜利,徐可为.金属学报,2005;41:985)
[2] Pei Z L, Zhang X B, Wang T G, Gong J, Sun C, Wen L S. Acta Metall Sin, 2005; 41: 84 (裴志亮,张小波,王铁钢,宫骏,孙超,闻立时.金属学报,2005;41:84)
[3] Fu E G, Zhuang D M, Zhang G. Acta Metall Sin, 2005; 41: 333 (付恩刚,庄大明,张弓.金属学报, 2005;41:333)
[4] Tien C L, Majumdar A, Gerner F M. Microscale Energy Transport. Washington, D C: Taylor & Francis, 1997: 1
[5] Fujii M, Zhang X, Xie H Q, Ago H, Takahashi K, Ikuta T, Abe H, Shimizu T. Phys Rev Lett, 2005; 95: 065502
[6] Zhang X, Fujiwara S, Fujii M. Int J Thermophys, 2000; 21: 965
[7] Vashaee D, Shakouri A. Phys Rev Lett, 2004; 92: 106103
[8] Pukushima A, Yagami K, Tulapurkar A A, Suzuki Y, Kubota H, Yamamoto A, Yuasa S. Jpn J Appl Phys, 2005; 44: L12
[9] Cahill D G, Ford W K, Goodson K E, Mahan G D, Majumdar A, Maris H J, Merlin R, Phillpot S R. J Appl Phys, 2003; 93: 793
[10] Feng X L, Li Z X, Guo Z Y. Chin Phys Lett, 2001; 18: 416
[11] Stewart D, Norris P M. Microscale Thermophys Eng, 2000; 4: 89
[12] Zhang X, Xie H Q, Fujii M, Ago H, Takahashi K, Ikuta T, Abe H, Shimizu T. Appl Phys Lett, 2005; 86: 171912
[13] Zhang X, Fujii M, Takahashi K, Ikuta T. In: Proc 26th Japan Symp on Thermophysical Properties, Tsukuba, Japan: JSTP, 2005: 349m
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[3] LI Dou, XU Changjiang, LI Xuguang, LI Shuangming, ZHONG Hong. Thermoelectric Properties of P-Type CeyFe3CoSb12 Thermoelectric Materials and Coatings Doped with La[J]. 金属学报, 2023, 59(2): 237-247.
[4] YU Shaoxia, WANG Qi, DENG Xiangtao, WANG Zhaodong. Preparation and Size Effect of GH3600 Nickel-Based Superalloy Ultra-Thin Strips[J]. 金属学报, 2023, 59(10): 1365-1375.
[5] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[6] ZHOU Lijun, WEI Song, GUO Jingdong, SUN Fangyuan, WANG Xinwei, TANG Dawei. Investigations on the Thermal Conductivity of Micro-Scale Cu-Sn Intermetallic Compounds Using Femtosecond Laser Time-Domain Thermoreflectance System[J]. 金属学报, 2022, 58(12): 1645-1654.
[7] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[8] ZHAO Li-Dong, WANG Sining, XIAO Yu. Carrier Mobility Optimization in Thermoelectric Materials[J]. 金属学报, 2021, 57(9): 1171-1183.
[9] ZHOU Hongyu, RAN Minrui, LI Yaqiang, ZHANG Weidong, LIU Junyou, ZHENG Wenyue. Effect of Diamond Particle Size on the Thermal Properties of Diamond/Al Composites for Packaging Substrate[J]. 金属学报, 2021, 57(7): 937-947.
[10] QU Ruitao, WANG Xiaodi, WU Shaojie, ZHANG Zhefeng. Research Progress in Shear Banding Deformation and Fracture Mechanisms of Metallic Glasses[J]. 金属学报, 2021, 57(4): 453-472.
[11] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[12] CUI Yang, LI Shouhang, YING Tao, BAO Hua, ZENG Xiaoqin. Research on the Thermal Conductivity of Metals Based on First Principles[J]. 金属学报, 2021, 57(3): 375-384.
[13] ZHANG Shouqing, HU Xiaofeng, DU Yubin, JIANG Haichang, PANG Huiyong, RONG Lijian. Cross-Section Effect of Ni-Cr-Mo-B Ultra-Heavy Steel Plate for Offshore Platform[J]. 金属学报, 2020, 56(9): 1227-1238.
[14] XU Zhanyi, SHA Yuhui, ZHANG Fang, ZHANG Huabing, LI Guobao, CHU Shuangjie, ZUO Liang. Orientation Selection Behavior During Secondary Recrystallization in Grain-Oriented Silicon Steel[J]. 金属学报, 2020, 56(8): 1067-1074.
[15] HE Shuwen, WANG Minghua, BAI Qin, XIA Shuang, ZHOU Bangxin. Effect of TaC Content on Microstructure and Mechanical Properties of WC-TiC-TaC-Co Cemented Carbide[J]. 金属学报, 2020, 56(7): 1015-1024.
No Suggested Reading articles found!