Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (11): 1187-1190     DOI:
Research Articles Current Issue | Archive | Adv Search |
THE INFLUENCE OF SULPHATE ION ON THE CRITICAL PITTING CORROSION TEMPERATURE OF 316 STAINLESS STEEL IN AQUEOUS SOLUTION CONTAINING CHLORIDE ION
LIAO Jiaxing; JIANG Yiming; WU Weiwei; ZHONG Cheng; LI Jin;SONG Hongwei
Department of Materials Science; Fudan University; Shanghai 200433
Cite this article: 

LIAO Jiaxing; JIANG Yiming; WU Weiwei; ZHONG Cheng; LI Jin; SONG Hongwei. THE INFLUENCE OF SULPHATE ION ON THE CRITICAL PITTING CORROSION TEMPERATURE OF 316 STAINLESS STEEL IN AQUEOUS SOLUTION CONTAINING CHLORIDE ION. Acta Metall Sin, 2006, 42(11): 1187-1190 .

Download:  PDF(635KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The influence of sulphate ion on the pitting corrosion behavior of 316 stainless steel has been studied by measuring the relationship of corrosion current and temperature in 0.5wt.% chloride ion solution at different concentration of sulphate ion under constant applied potentials. The results showed that with the increase of sulphate ion concentration, the passivation current of 316 stainless steel increased and the Open Circuit Potential of 316 stainless steel decreased; When the concentration of sulphate ion is less than 0.42wt.%, the critical pitting temperature of 316 stainless steel is lower than the value without sulphate ion, and when the concentration of sulphate ion is more than 0.42wt.%, the critical pitting temperature is higher than that value. The inhibition and acceleration effect of sulphate ion on the pitting corrosion was discussed by analyzing the mechanism of the ion-competitive adsorption.
Key words:  Stainless steel      Critical pitting temperature (CPT)      Sulphate ion      Chloride ion      
Received:  22 March 2006     
ZTFLH:  TG174.3  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I11/1187

[1] Garfias-Mesias L F, Sykes J M. Corros Sci, 1999; 41: 959
[2] Burstein G T, Pistorius P C, Mattin S P. Corros Sci, 1993; 35: 57
[3] Abd E I, Meguid E A, Mahmoud N A, Gouda V K. Br Corros J, 1998; 33: 42
[4] Li M C, Zeng C L, Lin H C, Cao C N. Acta Metall Sin, 2002; 36: 1287 (李谋成,曾潮流,林海潮,曹楚南.金属学报,2002;36:1287)
[5] Liu G Q, Zhu Z Y, Ke W. Acta Metall Sin, 2001; 37: 272 (刘国强,朱自勇,柯伟.金属学报,2001;37:272)
[6] Sherbini E E, Rehim S S. Corros Sci, 2000; 42: 785
[7] Lee W J, Pyun S I. Electrochim Acta, 2000; 45: 1901
[8] Pyun S-I, Park J-J. J Solid State Eletrochem, 2004; 8: 296
[9] Ernst P, Newman R C. Corros Sci, 2002; 44: 943
[10] Anderko A, Sridhar N, Dunn D S. Corros Sci, 2004; 46: 1583
[11] Burstein G T, Moloney J J. Electrochem Commun, 2004; 6: 1037
[12] Wu J W, Li X G, Du C W, Wang S, Song Y Q. J Mater Sci Technol, 2005; 21: 28
[1] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[2] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[3] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[4] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[5] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[6] WEN Donghui, JIANG Beibei, WANG Qing, LI Xiangwei, ZHANG Peng, ZHANG Shuyan. Microstructure Evolution at Elevated Temperature and Mechanical Properties of MoNb-Modified FeCrAl Stainless Steel[J]. 金属学报, 2022, 58(7): 883-894.
[7] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[8] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[9] LUO Wenze, HU Long, DENG Dean. Numerical Simulation and Development of Efficient Calculation Method for Residual Stress of SUS316 Saddle Tube-Pipe Joint[J]. 金属学报, 2022, 58(10): 1334-1348.
[10] CAO Chao, JIANG Chengyang, LU Jintao, CHEN Minghui, GENG Shujiang, WANG Fuhui. Corrosion Behavior of Austenitic Stainless Steel with Different Cr Contents in 700oC Coal Ash/High Sulfur Flue-Gas Environment[J]. 金属学报, 2022, 58(1): 67-74.
[11] PAN Qingsong, CUI Fang, TAO Nairong, LU Lei. Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. 金属学报, 2022, 58(1): 45-53.
[12] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[13] CHEN Guo, WANG Xinbo, ZHANG Renxiao, MA Chengyue, YANG Haifeng, ZHOU Li, ZHAO Yunqiang. Effect of Tool Rotation Speed on Microstructure and Properties of Friction Stir Processed 2507 Duplex Stainless Steel[J]. 金属学报, 2021, 57(6): 725-735.
[14] HUANG Yichuan, WANG Qing, ZHANG Shuang, DONG Chuang, WU Aimin, LIN Guoqiang. Optimization of Stainless Steel Composition for Fuel Cell Bipolar Plates[J]. 金属学报, 2021, 57(5): 651-664.
[15] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
No Suggested Reading articles found!