Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (7): 685-690     DOI:
Research Articles Current Issue | Archive | Adv Search |
Solidification Structure of Primary MnBi Phase in Bi-Mn Alloy Under High Magnetic Field
LI Xi; REN Zhongming; YU Jianbo; WANG Hui; DENG Kang
Department of Materials Science and Engineering; Shanghai University; Shanghai 200072
Cite this article: 

LI Xi; REN Zhongming; YU Jianbo; WANG Hui; DENG Kang. Solidification Structure of Primary MnBi Phase in Bi-Mn Alloy Under High Magnetic Field. Acta Metall Sin, 2005, 41(7): 685-690 .

Download:  PDF(405KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The influence of high intensity magnetic field on the solidified structure and behavior of Bi--6%Mn alloy has been investigated experimentally. The morphology of primary MnBi phase in the alloy cooled to 360℃ from melt and hemi--melt above Curie temperature at 10 T magnetic field was blade-like and its short axis is the easy magnetization. Under high intensity magnetic field, the easy magnetization axis turned to the direction of magnetic field and aggregated along the direction of magnetic field, and finally formed lath--like structure. The solidified microstructure of Bi--Mn alloy under magnetic field was discussed on the base of magnetization and crystal growth theory.
Key words:  Bi--Mn alloy      high magnetic field      easy magnetization axis      
Received:  29 October 2004     
ZTFLH:  TG146  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I7/685

[1] Mikelson A E, Karklin Y K. J Cryst Growth, 1981; 52: 524
[2] Farrel D E, Chandrasekhar B S. Phys Rev B, 1987; 36: 4025
[3] Rango P D, Lee M, Lejay P, Sulpice A, Tournier R, Ingold M, Germi P, Pernet M. Nature, 1991; 349: 770
[4] Katsuki A, Tokunaga R, Watanabe S I. Chem Lett, 1996; (8): 607
[5] Sassa K, Morikawa H, Asai S. J Jpn Inst Met, 1997; 61: 1283 (佐佐健介,森川拓,浅井滋生.日本金属会志, 1977;61: 1283)
[6] Wang H, Ren Z M, Deng K. Acta Matall Sin, 2002; 38: 41 (王晖,任忠鸣,邓康.金属学报,2002;38:41)
[7] Guo X, Altounian Z, Olsen J O S. J Appl Phys, 1991; 69: 6067
[8] Decarlo J L, Pirich R G. Metall Trans, 1984; 15A: 2155
[9] Shetty M N, Rawat D K, Rai K N. J Mater Sci, 1987; 22: 1908
[10] Moffatt W G. The Handbook of Binary Phase Diagrams. USA: Genium, 1984: 11, 83
[11] Feng D, Ding S Y, Zhai H R. Physics of Metal. Vol.4, Beijing: Science Press, 1998: 460 (冯端,丁世英,翟宏如.金属物理学第4卷,北京:科学 出版社,1998:460)
[12] Wan D F, Luo S H. Physics of Magnetism. Beijing: Electronic Industry Press, 1987: 8 (宛德福,罗世华.磁性物理.北京:电子工业出版社, 1987: 8)
[1] Qiang WANG, Meng DONG, Jinmei SUN, Tie LIU, Yi YUAN. Control of Solidification Process and Fabrication of Functional Materials with High Magnetic Fields[J]. 金属学报, 2018, 54(5): 742-756.
[2] Jianbo YU, Yuan HOU, Chao ZHANG, Zhibin YANG, Jiang WANG, Zhongming REN. Effect of High Magnetic Field on the Microstructure in Directionally Solidified Co-Al-W Alloy[J]. 金属学报, 2017, 53(12): 1620-1626.
[3] Hua ZHONG,Chuanjun LI,Jiang WANG,Zhongming REN,Yunbo ZHONG,Weidong XUAN. EFFECT OF A HIGH STATIC MAGNETIC FIELD ON MICROSEGREGATION OF DIRECTIONALLY SOLIDIFIED Al-4.5Cu ALLOY[J]. 金属学报, 2016, 52(5): 575-582.
[4] Jiaojiao DU,Guojian LI,Qiang WANG,Yonghui MA,Huimin WANG,Mengmeng LI. GROWTH MODE EVOLUTION AND SUBSEQUENT MAGNETIC PROPERTIES OF Fe FILMS WITH DIFFERENT GRAIN SIZES UNDER A HIGH MAGNETIC FIELD[J]. 金属学报, 2015, 51(7): 799-806.
[5] ZHONG Hua, REN Zhongming, LI Chuanjun, ZHONG Yunbo, XUAN Weidong, WANG Qiuliang. TEXTURE FORMATION AND GRAIN BOUNDARY CHARACTERISTIC OF Al-4.5Cu ALLOYS DIRECTIONALLY SOLIDIFIED UNDER HIGH MAGNETIC FIELD[J]. 金属学报, 2015, 51(4): 473-482.
[6] LI Guojian, WANG Zhen, WANG Qiang, WANG Huimin, DU Jiaojiao, MA Yonghui, HE Jicheng. EFFECT OF OXIDATION TIME UNDER HIGH MAG- NETIC FIELD ON THE MICROSTRUCTURE AND OPTICAL PROPERTIES OF OXIDIZED Co-DOPED ZnO FILMS[J]. 金属学报, 2014, 50(12): 1538-1542.
[7] LIU Yin, LIU Tie, WANG Qiang, WANG Huimin, WANG Li, HE Jicheng. EFFECT OF HIGH MAGNETIC FIELD ON CRYSTAL ORIENTATION, MORPHOLOGY AND MAGNETOSTRICTION OF TbFe2 AND Tb0.27Dy0.73Fe1.95 ALLOYS DURING HEAT TREATMENT PROCESS[J]. 金属学报, 2013, 49(9): 1148-1152.
[8] XIA Zhixin ZHANG Chi YANG Zhigang. EFFECT OF HIGH MAGNETIC FIELD ON PRECIPITATION BEHAVIORS AND MECHANICAL PROPERTIES IN REDUCED ACTIVATION STEELS[J]. 金属学报, 2011, 47(6): 713-719.
[9] LI Guimao WANG Engang ZHANG Lin ZUO Xiaowei HE Jicheng. EFFECTS OF HIGH MAGNETIC FIELD ON THE PRECIPITATE AND PROPERTY OF Cu-25%Ag ALLOY[J]. 金属学报, 2010, 46(9): 1128-1132.
[10] ZHANG Lin WANG Engang ZUO Xiaowei HE Jicheng. EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSITION BEHAVIOR OF Cu–RICH PARTICLES IN Cu–80%Pb HYPERMONOTECTIC ALLOY[J]. 金属学报, 2010, 46(4): 423-428.
[11] ZHENG Bin ZHOU Wei WANG Yinong QI Min. MARTENSITE TRANSFORMATION IN TiNi ALLOY UNDER COUPLING TEMPERATURE AND HIGH MAGNETIC FIELD USING LANDAU THEORY MODEL[J]. 金属学报, 2009, 45(1): 37-42.
[12] Wang Qi-Chao; Zhi-Gang Yang. A THEORETICAL ANALYSIS ON FORMATION OF GRAIN ELONGATION AND ALIGNED TWO-PHASE STRUCTURES INDUCED BY HIGH MAGNETIC FIELD[J]. 金属学报, 2008, 44(6): 708-712 .
[13] GONG Ming-Long; Xiang Zhao; Shoujing WANG; liang zuo. EFFECT OF MAGNETIC FIELD STRENGTH ON MICROSTRUCTURE OF PROEUTECTOID FERRITE IN FE-0.76%C ALLOY[J]. 金属学报, 2008, 44(5): 615-618 .
[14] Lin Zhang; Xiaowei Zuo; Jicheng He. Formation of Cu-rich Sphere Phase in Cu-80wt%Pb Hypermonotectic Alloys and the Effect of High Magnetic Field[J]. 金属学报, 2008, 44(2): 165-171 .
[15] YU Jian-Bo. Effect of electromagnetic vibration on the structure in solidified Al-4.5%Cu alloy under a strong magnetic field[J]. 金属学报, 2008, 44(2): 172-176 .
No Suggested Reading articles found!