Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (6): 577-582     DOI:
Research Articles Current Issue | Archive | Adv Search |
Thermal Stability of Structure and Hardness of the Surface Layer of 316L Stainless Steel After Surface Mechanical Attrition Treatment
WANG Aixiang; LIU Gang; ZHOU Lei; WANG Ke; YANG Xiaohua; LI Ying
Shenyang National Laboratory for Materials Science; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016;School of Materials Science and Engineering; Fuzhou University; Fuzhou 350002
Cite this article: 

WANG Aixiang; LIU Gang; ZHOU Lei; WANG Ke; YANG Xiaohua; LI Ying. Thermal Stability of Structure and Hardness of the Surface Layer of 316L Stainless Steel After Surface Mechanical Attrition Treatment. Acta Metall Sin, 2005, 41(6): 577-582 .

Download:  PDF(425KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  After surface mechanical attrition treatment (SMAT) for 316L stainless steel, a gradient structure in its surface layer with grain size from nano-scale to micro-scale was obtained. The samples before and after the SMAT were annealed in vacuum at different temperatures for different durations, and the structural evolution as well as the hardness and the residual stress variations along the depth were analyzed. Experimental results show that when the annealing temperature is lower than 0.5Tm(Tm is the melt point), no obvious change can be found for the grain size in the gradient structure, except the martensite transformation in the affected layer due to the release of residual stress, and the hardness distribution along the depth remains unchanged. When the annealing temperature is higher than 0.5Tm, recovery, recrystallization and sharp drop of the residual stress occur in the gradient structure, which induce significant reduction of the hardness along the depth. The effect of annealing duration on the structure and property of the SMAT sample is less important comparing with the annealing temperature.
Key words:  316L stainless steel      surface nanocrystallization      annealing      
Received:  27 September 2004     
ZTFLH:  TG142.71  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I6/577

[1]Lu K,Lu J.J Matr Sci Technol,1999;15:193
[2]Lu K,Lu J.Mater Sci Eng,2004;A375-377:38
[3]Wu X,Tao N,Hong Y,Xu B,Lu J,Lu K.Acta Mater,2002;50:2075
[4]Tao N R,Wang Z B,Tong W P,Sui M L,Lu J,Lu K.Acta Mater,2002;50:4603
[5]Zhang H W,Hei Z K,Liu G,Lu J,Lu K.Acta Mater,2003;51:1871
[6]Yong X P,Liu G,Lu K,Lu J.J Mater Sci Technol,2003;19:1
[7]Liu G,Wang S C,Lou X F,Lu J,Lu K.Scr Mater,2001;44:1791
[8]Lu K.Mater Sci Eng,1996;R16:161
[9]Lu A Q,Liu G,Liu C M.Acta Metall Sin,2004;40:943 (吕爱强,刘刚,刘春明.金属学报,2004;40:943)
[10]Ya M,Xing Y M,Dai F L,Lu K,Lu J.Surf Coat Technol, 2003;168:148
[11]Olson G B,Cohen M.Metall Trans,1975;6A:791
[12]Lin G Y,Han F,Yu J W,Peng X M,Ye L Y,Peng D S.Heat Treat Met,2004;29(3):8 (林高用,韩飞,余均武,彭小敏,叶凌英,彭大暑.金属热处理,2004;29(3):8)
[13]Shewmon P G.Transformation in Metals.New York:McGraw-Hill Book Co.,1969:116
[14]Klement U,Erb U,El Sherik A M,Aust K T.Mater Sci Eng,1995;A203:177
[15]Surganaragana C,Froes F H.Nanostruct Mater,1992;11:196
[16]Lian J S,Valiev R Z,Baudelet B.Acta Metall Mater,1995;43:4165
[17]Inami T,Okuda S,Maeta H,Ohtsuka H.Mater Trans JIM,1998;39:1029
[18]Lu K,Wang J T,Wei W D.J Phys,1992;25D:808
[19]Lu K,Dong Z F,Bakonyi I,Cziraki A.Acta Metall Mater,1995;43:2641
[20]Eckert J,Holzen J C,Johnson W L.J Appl Phys,1993;73:131
[1] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[2] YU Shaoxia, WANG Qi, DENG Xiangtao, WANG Zhaodong. Preparation and Size Effect of GH3600 Nickel-Based Superalloy Ultra-Thin Strips[J]. 金属学报, 2023, 59(10): 1365-1375.
[3] JIN Xinyan, CHU Shuangjie, PENG Jun, HU Guangkui. Effect of Dew Point on Selective Oxidation and Decarburization of 0.2%C-1.5%Si-2.5%Mn High Strength Steel Sheet During Continuous Annealing[J]. 金属学报, 2023, 59(10): 1324-1334.
[4] YANG Ping, WANG Jinhua, MA Dandan, PANG Shufang, CUI Feng'e. Influences of Composition on the Transformation-Controlled {100} Textures in High Silicon Electrical Steels Prepared by Mn-Removal Vacuum Annealing[J]. 金属学报, 2022, 58(10): 1261-1270.
[5] WANG Yu, HU Bin, LIU Xingyi, ZHANG Hao, ZHANG Haoyun, GUAN Zhiqiang, LUO Haiwen. Influence of Annealing Temperature on Both Mechanical and Damping Properties of Nb-Alloyed High Mn Steel[J]. 金属学报, 2021, 57(12): 1588-1594.
[6] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[7] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[8] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[9] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
[10] Wentao LI,Zhenyu WANG,Dong ZHANG,Jianguo PAN,Peiling KE,Aiying WANG. Preparation of Ti2AlC Coating by the Combination of a Hybrid Cathode Arc/Magnetron Sputtering with Post-Annealing[J]. 金属学报, 2019, 55(5): 647-656.
[11] Xiaodong LIN,Qunjia PENG,En-Hou HAN,Wei KE. Effect of Annealing on Microstructure of Thermally Aged 308L Stainless Steel Weld Metal[J]. 金属学报, 2019, 55(5): 555-565.
[12] Houlong LIU,Mingyu MA,Lingling LIU,Liangliang WEI,Liqing CHEN. Effect of Hot Band Annealing Processes on Texture and Formability of 19Cr2Mo1W Ferritic Stainless Steel[J]. 金属学报, 2019, 55(5): 566-574.
[13] Hanchen FENG,Xuegang MIN,Dasheng WEI,Lichu ZHOU,Shiyun CUI,Feng FANG. Effect of Low Temperature Annealing on Microstructure and Mechanical Properties of Ultra-Heavy Cold-DrawnPearlitic Steel Wires[J]. 金属学报, 2019, 55(5): 585-592.
[14] Chengwei SHAO, Weijun HUI, Yongjian ZHANG, Xiaoli ZHAO, Yuqing WENG. Microstructure and Mechanical Properties of a Novel Cold Rolled Medium-Mn Steel with Superior Strength and Ductility[J]. 金属学报, 2019, 55(2): 191-201.
[15] CHEN Lei , HAO Shuo , MEI Ruixue , JIA Wei , LI Wenquan , GUO Baofeng . Intrinsic Increment of Plasticity Induced by TRIP and Its Dependence on the Annealing Temperature in a Lean Duplex Stainless Steel[J]. 金属学报, 2019, 55(11): 1359-1366.
No Suggested Reading articles found!