Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (6): 583-587     DOI:
Research Articles Current Issue | Archive | Adv Search |
Numerical Modeling of Dendritic Growth
ZHU Mingfang; CHEN Jin; SUN Guoxiong;HONG Chunpyo
Department of Materials Science and Engineering; Southeast University; Nanjing 210096
Cite this article: 

ZHU Mingfang; CHEN Jin; SUN Guoxiong; HONG Chunpyo. Numerical Modeling of Dendritic Growth. Acta Metall Sin, 2005, 41(6): 583-587 .

Download:  PDF(422KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Based on the previous work reported by Zhu and Hong, a micro-scale cellular automaton (CA) model for modeling dendritic growth was further improved. In the present model, the solid/liquid interface equilibrium was determined using the Gibbs-Thomson equation for a simple binary alloy. It accounted for the effect of anisotropy in both interfacial kinetics and surface energy on the preferred growth orientation of a dendrite. The improved model was applied to simulate the dendritic features, in the cases of the free dendritic growth from an undercooled melt, competitive columnar growth in the directional solidification and equiaxed dendritic evolution. The simulation results show that the model can successfully predict the morphologies of both single and multi-dendrites with various preferred growth orientations.
Key words:  dendritic growth      modeling      
Received:  13 July 2004     
ZTFLH:  TG244  
  O242  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I6/583

[1]Boettinger W J,Coriell S R,Greer A L,Karma A,Kurz W,Rappaz M,Trivedi R.Acta Mater,2000;48:43
[2]Dilthey U,Pavlik V.In:Thomas B G,Beckermann C,eds.,Proc 8th Int Conf on Modeling of Casting and Welding Processes,Warrendale,PA:TMS,1998:589
[3]Nastac L.Acta Mater,1999;47:4253
[4]Zhu M F,Hong C P.ISIJ Int,2001;41:436
[5]Xu Q Y,Liu B C.Mater Trans,2001;42:2316
[6]Xu Q Y,Feng W M,Liu B C,Xiong S M.Ada Metall Sin,2002;38:799 (许庆彦,冯伟明,柳百成,熊守美.金属学报,2002;38:799)
[7]Zhu M F,Hong C P.Phys Rev,2002;66B:155428
[8]Zhu M F,Hong C P.Metall Mater Trans,2004;35A:1555
[9]Zhu M F,Yu J,Hong C P.Eng Sci,2004;6(5):8 (朱鸣芳,于金,洪俊杓.中国工程科学,2004;6(5):8)
[10]Beltran-Sanchez L,Stefanescu D M.Metall Mater Trans,2003;34A:367
[11]Beltran-Sanchez L,Stefanescu D M.Metall Mater Trans,2004;35A:2471
[12]Wang W,Lee P D,McLean M.Ada Mater,2003;51:2971
[13]Li Q,Guo Q Y,Li D Z,Qian B N,Li D M,Li R,Zhang P W.Chin Phys Lett,2004;21:143
[14]Li Q,Li D Z,Qian B N.Ada Metall Sin,2004;40:634 (李强,李殿中,钱百年.金属学报,2004;40:634)
[15]Beckermann C,Diepers H-J,Steinbach I,Karma A,Tong X.J Comput Phys,1999;154:468
[16]Shin Y H,Hong C P.ISIJ Int,2002;42:359
[17]Xu J J.J Cryst Growth,2002;245:134
[18]Trivedi R,Mason J T.Metall Trans,1991;22A:235
[19]Hoyt J J,Asta M.Phys Rev,2002;65B:214106
[20]Karma A,Rappel W J.Phys Rev,1998;57E:4323
[21]Lan C W,Liu C C,Hsu C M.J Comput Phys,2002;178:464
[22]Esaka H.PhD Thesis,Ecole Polytechnique Federale de Lausanne,Switzerland,1986
[23]Gandin Ch A,Rappaz M.Ada Metall Mater,1994;42:2233F
[1] CHEN Huabin, CHEN Shanben. Key Information Perception and Control Strategy of Intellignet Welding Under Complex Scene[J]. 金属学报, 2022, 58(4): 541-550.
[2] LIU Zhongqiu, LI Baokuan, XIAO Lijun, GAN Yong. Modeling Progress of High-Temperature Melt Multiphase Flow in Continuous Casting Mold[J]. 金属学报, 2022, 58(10): 1236-1252.
[3] YANG Yong, HE Quanfeng. Lattice Distortion in High-Entropy Alloys[J]. 金属学报, 2021, 57(4): 385-392.
[4] LIU Feng, WANG Tianle. Precipitation Modeling via the Synergy of Thermodynamics and Kinetics[J]. 金属学报, 2021, 57(1): 55-70.
[5] JIN Xuejun,GONG Yu,HAN Xianhong,DU Hao,DING Wei,ZHU Bin,ZHANG Yisheng,FENG Yi,MA Mingtu,LIANG Bin,ZHAO Yan,LI Yong,ZHENG Jinghua,SHI Zhusheng. A Review of Current State and Prospect of the Manufacturing and Application of Advanced Hot Stamping Automobile Steels[J]. 金属学报, 2020, 56(4): 411-428.
[6] Houfa SHEN, Kangxin CHEN, Baicheng LIU. Numerical Simulation of Macrosegregation inSteel Ingot Casting[J]. 金属学报, 2018, 54(2): 151-160.
[7] Tongmin WANG, Jingjing WEI, Xudong WANG, Man YAO. Progress and Application of Microstructure Simulation of Alloy Solidification[J]. 金属学报, 2018, 54(2): 193-203.
[8] Rui CHEN, Qingyan XU, Huiting GUO, Zhiyuan XIA, Qinfang WU, Baicheng LIU. Modeling of Strain Hardening Behavior and Mechanical Properties of Al-7Si-Mg Cast Aluminum AlloysDuring Tensile Process[J]. 金属学报, 2017, 53(9): 1110-1124.
[9] Mingfang ZHU, Qianyu TANG, Qingyu ZHANG, Shiyan PAN, Dongke SUN. CELLULAR AUTOMATON MODELING OF MICRO-STRUCTURE EVOLUTION DURING ALLOY SOLIDIFICATION[J]. 金属学报, 2016, 52(10): 1297-1310.
[10] Lei ZHAO,Hongxiang JIANG,Tauseef AHMAD,Jiuzhou ZHAO. STUDY OF SOLIDIFICATION FOR GAS-ATOMIZED DROPLET OF Cu-Co-Fe ALLOY[J]. 金属学报, 2015, 51(7): 883-888.
[11] ZHANG Lei, ZHAO Honglei, ZHU Mingfang. SIMULATION OF SOLIDIFICATION MICROSTRUC-TURE OF SPHEROIDAL GRAPHITE CAST IRON USING A CELLULAR AUTOMATON METHOD[J]. 金属学报, 2015, 51(2): 148-158.
[12] YANG Qianqian, LIU Yuan, LI Yanxiang. MODELING AND SIMULATION OF STRUCTURAL FORMATION OF POROUS ALUMINUM IN GASAR SOLIDIFICATION[J]. 金属学报, 2014, 50(11): 1403-1412.
[13] LI Zhengyang, ZHU Mingfang, DAI Ting. MODELING OF MICROPOROSITY FORMATION IN AN Al-7%Si ALLOY[J]. 金属学报, 2013, 49(9): 1032-1040.
[14] CAO Lingyong, GUO Mingxing, CUI Hua, CAI Yuanhua,ZHANG Qiaoxia,HU Xiaoqian,ZHANG Jishan. STUDY ON THE KINETICS OF PHASE TRANSFORMATION β→α IN THE HOMOGENEOUS HEAT TREATMENT OF Al-Mg-Si SERIES ALLOYS[J]. 金属学报, 2013, 29(4): 428-434.
[15] YUAN Hao, FAN Junfei, REN Sanbing, WANG Haowei, ZHANG Yijie. THREE—DIMENSIONAL MATHEMATICAL SHAPE MODEL AND PROCESS RESEARCH OF SPRAY—FORMED BILLET[J]. 金属学报, 2013, 49(12): 1532-1542.
No Suggested Reading articles found!