Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (6): 568-572     DOI:
Research Articles Current Issue | Archive | Adv Search |
Molecular Dynamics Simulation and Analysis of Bulk and Surface Melting Processes for Metal Cu
WANG Hailong; WANG Xiuxi; LIANG Haiyi
CAS Key Laboratory of Mechanical Behavior and Design of Materials; University of Science and Technology of China; Hefei 230026
Cite this article: 

WANG Hailong; WANG Xiuxi; LIANG Haiyi. Molecular Dynamics Simulation and Analysis of Bulk and Surface Melting Processes for Metal Cu. Acta Metall Sin, 2005, 41(6): 568-572 .

Download:  PDF(191KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Molecular dynamics simulations of the bulk and surface melting processes were performed for metal Cu. The variations of the structure and energy in the system during bulk melting process were analyzed. The movement of the solid/liquid interface position during surface melting process was observed. The interaction between atoms in the system adopts the embedded atom potential proposed by Mishin. The simulation results show that the structure and energy in the system vary discontinuously at 1585 K in bulk melting process and the solid/liquid interface remains unchanged at 1380 K in the surface melting process. The different mechanisms of the two melting processes induce lower thermodynamic melting point (1380 K) than the bulk melting point (1585 K). Surface melting is significant in real melting process, so the experimental datum measured is the thermodynamic melting point. The simulated melting point coincides well with the experimental one, thus it can be concluded that the present melting point simulation method is correct and effective, and the Mishin's embedded atom potential is suitable for dealing with complicated and disordered systems.
Key words:  Cu      molecular dynamics      bulk melting point      
Received:  27 August 2004     
ZTFLH:  TG146.1  
  TB115  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I6/568

[1]Daw M S,Baskes M I.Phys Rev Lett,1983;50:1285
[2]Daw M S,Baskes M I.Phys Rev,1984;29B:6443
[3]Ackland G J,Tichy G,Vitek V,Finnis M W.Philos Mag,1987;56A:735
[4]Finnis M W,Sinclair J E.Philos Mag,1984;50A:45
[5]Holender J M.Phys Rev,1990;41B:8054
[6]Zhang T,Zhang X R,Guan L,Qi Y H,Xu C Y.Acta Metall Sin,2004;40:251 (张弢,张晓茹,管立,齐元华,徐昌业.金属学报,2004;40:251)
[7]Wang L,Bian X F,Li H.Chin J Chem Phys,2000;13:544 (王丽,边秀房,李辉.化学物理学报,2000;13:544)
[8]Lutsko J F,Wolf D,Phillpot S R,Yip S.Phys Rev,1989;40B:2841
[9]Foiles S M,Adams J B.Phys Rev,1989;40B:5909
[10]Kojima R,Susa M.High Temp High Pressures,2002;34:639
[11]Born M.J Chem Phys,1939;7:591
[12]Mishin Y,Mehl M J,Papaconstantopoulos D A,Voter A F,Kress J D.Phys Rev,2001;63B:224106
[13]Waseda Y.The Structure of Non-Crystalline Materials. New York:McGraw-Hill,1980:292
[14]Rapaport D C.The Art of Molecular Dynamics Simulation.Cambridge:Cambridge University Press,1995:90
[15]Paterlini M G,Ferguson D M.J Chem Phys,1998;236:243
[16]Andersen H C.J Chem Phys,1980;72:2384
[17]Wolf D,Okamoto P R,Yip S,Lutsko J F,Kluge M.J Mater Res,1990;5:286
[18]Broughton J Q,Gilmer G H,Jackson K A.Phys Rev Lett,1982;49:1496
[1] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[3] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[4] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[5] WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan. Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism[J]. 金属学报, 2023, 59(5): 679-692.
[6] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[7] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[8] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[9] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[10] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[11] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[12] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[13] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[14] FENG Di, ZHU Tian, ZANG Qianhao, LEE Yunsoo, FAN Xi, ZHANG Hao. Solution Behavior of Spray-Formed Hypereutectic AlSiCuMg Alloy[J]. 金属学报, 2022, 58(9): 1129-1140.
[15] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
No Suggested Reading articles found!