Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (11): 1207-1214     DOI:
Research Articles Current Issue | Archive | Adv Search |
Hot deformation behavior and micro-structure evolution of superalloy GH742
ZHANG Beijiang; ZHAO Guangpu; XU Guohua; FENG Di
High Temperature Materials Division; Central Iron and Steel Research Institute
Cite this article: 

ZHANG Beijiang; ZHAO Guangpu; XU Guohua; FENG Di. Hot deformation behavior and micro-structure evolution of superalloy GH742. Acta Metall Sin, 2005, 41(11): 1207-1214 .

Download:  PDF(1126KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Hot deformation behavior of superalloy GH742 was studied by isothermal compression test conducted on MTS machine. Flow stress data at various temperatures from 950℃ to 1150℃ and strain rates from 0.001 s-1 to 1 s-1 were obtained, microstructure evolution during deformation under the above conditions was also investigated. The results show that when deformation was performed at single phase region above 1075℃, rather low flow stress is exhibited, the apparent activation energy approachs the activation energy of grain boundary diffusion, the deformation mechanism is controlled by grain growth rate and the fully recrystallized structures can be achieved. In two phase region, GH742 alloy presents considerably high activation energy, with decreasing temperature and increasing strain rate the flow stress increases swiftly, while the dynamic recrystallization was strongly prohibited. At transition temperature between single and two phase regions, a discontinuous change in flow stress was observed, and the apparent activation energy sharply increased, strain induced dynamically precipitated γ phase inhibits the migration of grain boundaries, the diameter of the recrystallized grain is drastically reduced with increase of plastic strain, and the microstructure was effectively refined.
Key words:  nickel base superalloy      hot working      flow behavior      
Received:  30 June 2005     
ZTFLH:  TG111.7  
  TG113.1  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I11/1207

[1] Long Z D, Zhuang J Y, Deng B, Zhong Z Y. Acta Metall Sin, 1999; 35: 1211 (龙正东,庄景云,邓波,仲增墉.金属学报,1999;35:1211)
[2] Meyers M A, Benson D J, Vohringer O, Kad B K, Xue Q,Fu H H. Mater Sci Eng, 2002; A322: 194
[3] Semiatin S L, Weaver D S, Fagin P N, Glavicic M G. Metall Mater Trans, 2004; 35A: 679
[4] Hayes R W. Acta Metall, 1983; 31: 365
[5] Doherty R D, Hughes D A, Humphreys F J, Jonas J J.Mater Sci Eng, 1997; A238: 219
[6] Prasad Y, Seshacharyulu T. Int Mater Rev, 1998; 43: 243
[7] Shen G S, Semiatin S L, Shivpuri R. Metall Mater Trans,1995; 26A: 1795
[8] Verdier M, Brechet Y, Guyot P. Acta Mater, 1999; 47:127
[9] Sakai T, Ohashi M, Jonas J J. Acta Metall, 1988; 36: 1781
[10] Verdier M, Brechet Y, Guyot P. Acta Mater, 1999; 47:127
[11] Speer J G, Hasen S S. Metall Trans, 1989; 20A: 25
[12] Simmons J P, Wen Y, Shen C, Wang Y Z. Mater Sci Eng,2004; A365: 136
[13] Gourdet S, Montheillet F. Acta Mater, 2003; 51: 2685
[14] Song X Y, Markus R, Zhang J X. Acta Metall Sin, 2004; 40: 1009 (宋晓艳,Markus R,张久兴.金属学报,2004;40:1009)
[15] McQueen H J, Ryan N D. Mater Sci Eng, 2002; A322: 43
[16] Weertman J. J Appl Phys, 1957; 28: 362
[17] Bruni C, Forcellese A, Gabrielli F. Mater Sci Technol,2002; 125: 242
[18] Siddall R J, Eggar J W. Mater Sci Technol, 1986; 2: 728
[19] Wahabi M E, Cabrera J M, Prado J M. Mater Sci Eng,2003; A343: 116
[20] Briottet L, Jonas J J, Monthellet F. Acta Mater, 1996;44:1665
[21] Gottstein G, Kocts U. Acta Metall, 1983; 31: 175
[22] Sakai T, Jonas J J. Acta Metall, 1984; 32: 189
[23] Crespo D, Pradell T, Clavaguera N. Mater Sci Eng, 1997;A238: 160
[24] Kazaryan A, Wang Y, Dregia S A, Patton B R. Acta Mater, 2002; 50: 2491
[25] Tian B, Wang Y, Zickler G A, Lind C, Paris O. Acta Mater, 2003; 51: 4149
[1] HE Changshu, QIE Mofan, ZHANG Zhiqiang, ZHAO Xiang. Effect of Axial Ultrasonic Vibration on Metal Flow Behavior During Friction Stir Welding[J]. 金属学报, 2021, 57(12): 1614-1626.
[2] LIU Qingqi, LU Ye, ZHANG Yifei, FAN Xiaofeng, LI Rui, LIU Xingshuo, TONG Xue, YU Pengfei, LI Gong. Thermal Deformation Behavior of Al19.3Co15Cr15Ni50.7 High Entropy Alloy[J]. 金属学报, 2021, 57(10): 1299-1308.
[3] ZHANG Rui, LIU Peng, CUI Chuanyong, QU Jinglong, ZHANG Beijiang, DU Jinhui, ZHOU Yizhou, SUN Xiaofeng. Present Research Situation and Prospect of Hot Working of Cast & Wrought Superalloys for Aero-Engine Turbine Disk in China[J]. 金属学报, 2021, 57(10): 1215-1228.
[4] Bolü XIAO, Zhiye HUANG, Kai MA, Xingxing ZHANG, Zongyi MA. Research on Hot Deformation Behaviors of Discontinuously Reinforced Aluminum Composites[J]. 金属学报, 2019, 55(1): 59-72.
[5] Yusen SU, Yinhui YANG, Jianchun CAO, Yuliang BAI. Research on Hot Working Behavior of Low-NickelDuplex Stainless Steel 2101[J]. 金属学报, 2018, 54(4): 485-493.
[6] Hai ZHANG,Shilei LI,Gang LIU,Yanli WANG. Effects of Hot Working on the Microstructure and Thermal Ageing Impact Fracture Behaviors of Z3CN20-09MDuplex Stainless Steel[J]. 金属学报, 2017, 53(5): 531-538.
[7] Jieshan HOU,Jianting GUO,Chao YUAN,Lanzhang ZHOU. STUDY ON THE PRECIPITATION AND DISSOLUTION OF σ PHASE IN A HOT CORROSION RESISTANCE CAST NICKLE BASE SUPERALLOY[J]. 金属学报, 2016, 52(2): 168-176.
[8] HAN Guoming, CUI Chuanyong, GU Yuefeng, HU Zhuangqi, SUN Xiaofeng. INVESTIGATION OF TEMPERATURE DEPENDENCE OF PLC EFFECT IN A NICKEL BASE SUPERALLOY[J]. 金属学报, 2013, 49(10): 1243-1247.
[9] ZENG Qiang, YAN Ping, SHAO Chong, ZHAO Jingchen, HAN Fengkui,ZHANG Longfei. INVESTIGATION ON COARSENING BEHAVIORS OF SERRATED GRAIN BOUNDARIES IN K480 NICKEL BASE SUPERALLOY DURING LONG TERM AGING AT 900 ℃[J]. 金属学报, 2013, 49(1): 63-70.
[10] YAO Zhihao DONG Jianxin ZHANG Maicang. MICROSTRUCTURE CONTROL AND PREDICTION OF GH738 SUPERALLOY DURING HOT DEFORMATION
I. Construction of Microstructure Evolution Model
[J]. 金属学报, 2011, 47(12): 1581-1590.
[11] YAO Zhihao WANG Qiuyu ZHANG Maicang DONG Jianxin. MICROSTRUCTURE CONTROL AND PREDICTION OF GH738 SUPERALLOY DURING HOT DEFORMATION
II. Verification and Application of Microstructural Evolution Model
[J]. 金属学报, 2011, 47(12): 1591-1599.
[12] KONG Fanrong ZHANG Haiou WANG Guilan. MULTISCALE NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER AND GRAIN GROWTH DURING PLASMA DEPOSITION MANUFACTURING[J]. 金属学报, 2009, 45(4): 415-421.
[13] YAN Guangzong; PENG Zhifang. An Optimization Method For Estimating Phase Compositions And Amounts In Two—Phase Nickel Base Superalloys[J]. 金属学报, 2005, 41(4): 363-368 .
[14] ZHOU Li; LI Shouxin; WANG Yuechen; WANG Zhongguang. Calculation of the internal stresses at the γ/γ’ interface of DD8 single crystal nickel base superalloy after thermo-mechanical fatigue[J]. 金属学报, 2005, 41(3): 245-250 .
[15] ZHAO Shuangqun; XIE Xishan; Gaylord D. Smith. Corrosion of A New Nickel Base Superalloy in Coal--Fired Boiler Environments[J]. 金属学报, 2004, 40(6): 659-.
No Suggested Reading articles found!