Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (2): 168-176    DOI: 10.11900/0412.1961.2015.00358
Orginal Article Current Issue | Archive | Adv Search |
STUDY ON THE PRECIPITATION AND DISSOLUTION OF σ PHASE IN A HOT CORROSION RESISTANCE CAST NICKLE BASE SUPERALLOY
Jieshan HOU,Jianting GUO,Chao YUAN,Lanzhang ZHOU()
Institute of Metal research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Jieshan HOU,Jianting GUO,Chao YUAN,Lanzhang ZHOU. STUDY ON THE PRECIPITATION AND DISSOLUTION OF σ PHASE IN A HOT CORROSION RESISTANCE CAST NICKLE BASE SUPERALLOY. Acta Metall Sin, 2016, 52(2): 168-176.

Download:  HTML  PDF(10914KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The experimental alloy is designed and employed in high-performance industrial gas turbines as low-pressure turbine blades, working in temperature range of 750~900 ℃. The alloy contains high levels of refractory elements in order to increase the high-temperature mechanical properties. However, this can make the alloy prone to the formation of σ phase during service, which could deteriorate the properties further if the fraction of σ phase exceeds the safety allowances. In this study, the formation of σ phase during long-term thermal exposure, dissolution of the σ phase during rejuvenation process and their influence on stress-rupture properties of a hot-corrosion resistant nickel base superalloy have been investigated. During long-term thermal exposure at 800~900 ℃ for up to 1×104 h, the σ phase formation is mainly in dendrite cores with a few at interdendritic regions. As the aging temperature increases, the precipitation rate of σ phase increases and the incubation time for nucleation of σ phase decreases. From the kinetic analysis, the σ phase form firstly in the vicinity or on the M23C6 in dendrite cores with the strong segregation of W, Cr and Co. The calculated activation energies of σ formation show that the early stage is related to Co and Cr diffusions and the steady stage is related to Mo diffusion. During solid solution process at 1000~1170 ℃, the σ phase precipitated during long-term thermal exposure dissolves to γ matrix. As the solid solution temperature is higher, the dissolution of σ phase becomes faster. Moreover, the σ phase does not embrittle the alloy. The reheat treatment of the alloy leads to the dissolution of precipitated σ phase and further prolongs the stress-rupture life efficiently.

Key words:  nickel base superalloy      long-term exposure      precipitation      dissolution      σ phase     
Received:  07 July 2015     
Fund: Supported by National Natural Science Foundation of China (Nos.30170302 and 51571191)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00358     OR     https://www.ams.org.cn/EN/Y2016/V52/I2/168

Position Cr W Co Mo Ti Al Hf Ni
Dendrite core 16.42 7.31 11.12 2.12 4.32 2.92 0.20 Bal.
Interdendritic region 14.65 3.72 10.40 2.01 4.95 3.59 0.48 Bal.
Matrix near MC 14.11 3.97 11.15 2.04 4.23 2.58 - Bal.
Matrix near M23C6 26.58 3.61 10.16 4.11 4.56 2.78 - Bal.
Table 1  Average element concentrations at different regions in the alloy after aging treatment at 850 ℃ for 1×104 h (mass fraction / %)
Fig.1  SEM images of extracted σ phase after thermal-exposure at 850 ℃ for 5×103 h (a) and deep-etched σ phase and γ' phase after thermal-exposure at 850 ℃ for 1×104 h (b)
Fig.2  TEM image of the σ phase (a) and the corresponding SAED pattern (inset), and HRTEM image of the interface between the σ phase and matrix (b)[9]
Fig.3  EDS element analysis results of the σ phase in the alloy after exposure at 800~900 ℃ for 5×103 h
Fig.4  SEM images of the alloy exposed at 900 ℃ for 1×103 h (a), 3×103 h (b), 5×103 h (c), and 1×104 h (d)
Fig.5  Activation energies for σ precipitation calculated at the certain volume fractions
Position M?d B?0
Dendrite core 1.02 0.82
Interdendritic region 0.99 0.80
Matrix near MC 0.92 0.74
Matrix near M23C6 1.03 0.86
Table 2  Calculated M?d and B?0 at different regions in the alloy after aging treatment at 850 ℃ for 1×104 h
Fig.6  SEM images showing the re-solution of σ phase at 1000 ℃ for 15 min (a), 30 min (b), 60 min (c), 90 min (d), 120 min (e) and 180 min (f) in the alloy after aging at 850 ℃ for 5×103 h
Fig.7  Magnified SEM images of σ phase at 1000 ℃ for 60 min (a) and 240 min (b) after aging at 850 ℃ for 5×103 h (Arrows in Fig.7a indicate the dissolution of σ phase to matrix, and arrows in Fig.7b indicate very thin remained σ phase and the lines show γ matrix because of the dissolution of the σ phase)
Fig.8  Measured (a) and fitted (b) volume fraction of σ phase as a function of solution time (ft—volume fraction of σ phase after solution for time t, f0 volume fraction of σ phase before solution treatment)
Fig.9  Hardness as a function of the solution time at 1000 and 1170 ℃ of the alloy after thermal exposure at 850 ℃ for 5×103 h
State Life
h
Elongation
%
SHT 324 11.0
SHT+thermal exposure at
850 ℃ for 5×103 h
84 11.6
SHT+thermal exposure at 850 ℃
for 5×103 h+SHT
252 8.4
Table 3  Stress-rupture properties of alloys after standard heat-treatment (SHT), hermal exposure at 850 ℃ for 5×103 h and reheat treatment
Fig.10  SEM image of the alloy after thermal exposure at 850 ℃ for 5×103 h
Fig.11  SEM images of fracture surface after stress-rupture tests at 900 ℃, 274 MPa for thermal exposed alloy (a) and the exposed alloy plus reheat treatment (b)
[1] Rettig R, Singer R F.In: Huron E S, Reed R C, Hardy M, Mills M J, Montero R E, Portella P D, Talesman J eds., Superalloys 2012, Pennsylvania: TMS, 2012: 205
[2] Pang H T, Edmonds I M, Jones C N, Stone H J, Rae C M F. In: Huron E S, Reed R C, Hardy M, Mills M J, Montero R E, Portella P D, Talesman J eds., Superalloys 2012, Pennsylvania: TMS, 2012: 301
[3] Han Y F, Ma W Y, Dong Z Q, Li S S, Gong S K.In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Superalloys 2008, Pennsylvania: TMS, 2008: 91
[4] Pan Y M, Dung D S, Cragnolino G A.Metall Meter Trans, 2005; 36A: 1143
[5] Zhao S Q, Xie X S.Acta Metall Sin, 2003; 39: 399
[5] (赵双群, 谢锡善. 金属学报, 2003; 39: 399)
[6] Sun F, Zhang J X, Liu P, Feng Q, Han X D, Mao S C. J Alloys Compd, 2012; 536: 80
[7] Shi Z X, Li J R, Liu S Z.Prog Nat Sci: Mater Int, 2012; 22: 426
[8] El-Bagoury N, Mohsen Q.Phase Transitions, 2011; 84: 1108
[9] Hou J S, Guo J T, Zhou L Z, Ye H Q.Z Metallkund, 2006; 2: 174
[10] Hou J S, Zhou L Z, Yuan C, Guo J T, Wang W, Qin X Z, Liaw P K.Mater Charact, 2013; 77: 47
[11] Leclaire A D.In: Brandes E A, Brook E B eds., Smithells Metals Reference Book. Oxford: Butterworth-Heinemann, Linacre House, Jordan Hill, 1992: 131
[12] Zhou C, Gong W, Huang S, Wei H.J Min Metall, 2011; 47B: 171
[13] Cheng K Y, Jo C Y, Jin T, Hu Z Q.Mater Sci Eng, 2011; A528: 2704
[14] Mao P L, Xin Y, Han K, Wei G J.Acta Metall Sin (Engl Lett), 2009; 22: 365
[15] Cui T, Zhang Y S, Guo S, Wang L, Yang H C.Acta Metall Sin (Engl Lett), 2004; 17: 645
[16] Tian S G, Qian B J, Li T, Yu L L, Wang M G.Chin J Nonferrous Met, 2010; 20: 2154
[16] (田素贵, 钱本江, 李唐, 于莉丽, 王明罡. 中国有色金属学报, 2010; 20: 2154)
[17] Zhang B J, Wang L, Xu G H, Qin H Y, Zhao G P.J Mater Metall, 2012; 11: 136
[17] (张北江, 王磊, 胥国华, 秦鹤勇, 赵光普. 材料与冶金学报, 2012; 11: 136)
[18] Yokokawa T, Osawa M, Nishida K, Kobayashi T, Koizumi Y, Harada H.Scr Mater, 2003; 49: 1041
[19] Kobayashi T, Koizumi Y, Nakazawa S, Yamagata T, Harada H.In: Strang A, Banks W M, Conroy R D, Goulette M J eds., Proc 4th Int Charles Parsons Turbine Conference, Newcastle upon Tyne: Maney Publishing, 1997: 766
[20] Dong J X, Xie X S, Fujio Abe. J Mater Eng, 2000; (11): 15
[20] (董建新, 谢锡善, 阿部富士雄. 材料工程, 2000; (11): 15)
[21] Chen G S, Yao C C, Zhong Z Y.Acta Metall Sin, 1978; 14: 284
[21] (陈淦生, 姚常春, 仲增墉. 金属学报, 1978; 14: 284)
[22] Yeh A C, Rae C M F, Tin S. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale: TMS, 2004: 677
[23] Divya V D, Balam S S K, Ramamurty U, Paul A.Scr Mater, 2010; 62: 621
[24] Acharya M V, Fuchs G E.Scr Mater, 2006; 54: 61
[25] Seiser B, Drautz R, Pettifor D G.Acta Mater, 2011; 59: 749
[26] Tin S, Pollock T M.Mater Sci Eng, 2003; A348: 111
[27] Monastyrskaia E V, Petrov E V, Beljaev V E, Dushkin A M.In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale: TMS, 2004: 779
[28] Karunaratne M S A, Cox D C, Carter P, Reed R C. In: Green K A, Pollock T M, Kissinger R D eds., Superalloys 2000, Warrendale: TMS, 2000: 263
[29] Darolia R, Lahrmann D F, Field R D.In: Reichman S, Dhul D N, Maurer G, Antolovich S, Lund C eds., Superalloys 1988, Warrendale: TMS, 1988: 255
[30] Erickson G L.In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Warrendale: TMS, 1996: 35
[31] Walston W S, Schaeffer J C, Murphy W H.In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Warrendale: TMS, 1996: 9
[32] Rae C M F, Karunaratne M S A, Small C J, Broomfield R W, Jones C N, Reed R C. In: Green K A, Pollock T M, Kissinger R D eds., Superalloys 2000, Warrendale: TMS, 2000: 767
[33] Flemings M C. Solidification Processing.New York: McGraw Hill Inc., 1974: 331
[34] Walston W S.In: Fuchs G E, Dannemann K A, Deragon T A eds., Long-Term Stability of High Temperature Materials. Warrendale, PA: TMS, 1999: 43
[35] Morinaga M, Yukawa N, Ezaki H.Philos Mag, 1995; 51A: 223
[36] Chen Q Z, Jones C N, Knowles D M.Acta Mater, 2002; 50: 1095
[37] Pyczak F, Mughrabi H.In: Morris D G, Naka S, Caron P eds., Intermetallics and Superalloys. Weinheim: Wiley-VCH, 2000: 47
[38] Keefe P W, Mancuso S O, Maurer G E.In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstron D L eds., Superalloy 1992, Warrendale: TMS, 1992: 487
[39] Na Y S, Park N K, Reed R C.Scr Mater, 2000; 43: 585
[40] Li X, Miodownik A P, Saunders N.Mater Sci Technol, 1998; 18: 861
[41] Plati A. Master Thesis, University of Cambridge, 2003
[42] Burke J.The Kinetics of Phase Transformations in Metals. Oxford: Pergamon Press, 1965: 1
[43] Kim H T, Chun S S, Yao X X, Fang Y, Choi J.J Mater Sci, 1997; 32: 4917
[44] Moshtaghin R S, Asgari S.Mater Des, 2003; 24: 325
[45] Jackson M P, Reed R C.Mater Sci Eng, 1999; A259: 85
[46] Bryant D J, McIntosh Dr G. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Warrendale: TMS, 1996: 713
[47] Rae C M F, Reed R C.Acta Metall, 2001; 49: 4113
[48] Acharya M V, Fuchs G E.Mater Sci Eng, 2004; A381: 143
[49] Durand-Charre M.The Microstructure of Superalloys. Singapore: Gordon and Breach Science Publishers, 1997: 3
[50] Copley S M, Giamei A F, Johnson S M, Hornbeck M F.Metall Trans, 1970; 1: 2193
[51] Zhang J S, Hu Z Q, Murata Y, Morinaga M, Yukawa N.Metall Trans, 1993; 24A: 2443
[1] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[2] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[3] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[4] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[5] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[6] TANG Shuai, LAN Huifang, DUAN Lei, JIN Jianfeng, LI Jianping, LIU Zhenyu, WANG Guodong. Co-Precipitation Behavior in Ferrite Region During Isothermal Process in Ti-Mo-Cu Microalloyed Steel[J]. 金属学报, 2022, 58(3): 355-364.
[7] YUAN Bo, GUO Mingxing, HAN Shaojie, ZHANG Jishan, ZHUANG Linzhong. Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys[J]. 金属学报, 2022, 58(3): 345-354.
[8] HAN Ruyang, YANG Gengwei, SUN Xinjun, ZHAO Gang, LIANG Xiaokai, ZHU Xiaoxiang. Austenite Grain Growth Behavior of Vanadium Microalloying Medium Manganese Martensitic Wear-Resistant Steel[J]. 金属学报, 2022, 58(12): 1589-1599.
[9] SUN Shijie, TIAN Yanzhong, ZHANG Zhefeng. Strengthening and Toughening Mechanisms of Precipitation- Hardened Fe53Mn15Ni15Cr10Al4Ti2C1 High-Entropy Alloy[J]. 金属学报, 2022, 58(1): 54-66.
[10] XUE Kemin, SHENG Jie, YAN Siliang, TIAN Wenchun, LI Ping. Influence of Precipitation of China Low Activation Martensitic Steel on Its Mechanical Properties After Groove Pressing[J]. 金属学报, 2021, 57(7): 903-912.
[11] XU Kun, WANG Haichuan, KONG Hui, WU Zhaoyang, ZHANG Zhan. Precipitation Kinetics of Al3Sc in Aluminum Alloys Modeled with a New Grouping Cluster Dynamics Model[J]. 金属学报, 2021, 57(6): 822-830.
[12] CHEN Guo, WANG Xinbo, ZHANG Renxiao, MA Chengyue, YANG Haifeng, ZHOU Li, ZHAO Yunqiang. Effect of Tool Rotation Speed on Microstructure and Properties of Friction Stir Processed 2507 Duplex Stainless Steel[J]. 金属学报, 2021, 57(6): 725-735.
[13] CHEN Junzhou, LV Liangxing, ZHEN Liang, DAI Shenglong. Precipitation Strengthening Model of AA 7055 Aluminium Alloy[J]. 金属学报, 2021, 57(3): 353-362.
[14] HAN Baoshuai, WEI Lijun, XU Yanjin, MA Xiaoguang, LIU Yafei, HOU Hongliang. Effect of Pre-Deformation on Microstructure and Mechanical Properties of Ultra-High Strength Al-Zn-Mg-Cu Alloy After Ageing Treatment[J]. 金属学报, 2020, 56(7): 1007-1014.
[15] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
No Suggested Reading articles found!