Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (11): 1215-1220     DOI:
Research Articles Current Issue | Archive | Adv Search |
Creep deformation mechanism in a Ni base single crystal superalloy
LIU Lirong; JIN Tao; ZHAO Nairen; WANG Zhihui; SUN Xiaofeng;GUAN Hengrong; HU Zhuangqi
Institute of Metal Research; The Chinese Academy of Sciences; School of Materials Science and Engineering; Shenyang University of Technology
Cite this article: 

LIU Lirong; JIN Tao; ZHAO Nairen; WANG Zhihui; SUN Xiaofeng; GUAN Hengrong; HU Zhuangqi. Creep deformation mechanism in a Ni base single crystal superalloy. Acta Metall Sin, 2005, 41(11): 1215-1220 .

Download:  PDF(578KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The creep deformation mechanisms of a Ni base single crystal superalloy at 760℃/780 MPa and 982℃/248 MPa were studied by a transmission electron microscopy (TEM). The results show that under moderate temperature and high stress (760℃/780 MPa), the γ' phase is sheared through dissociation of matrix dislocation, leaving a stacking fault at low strain stage; while at high strain stage, the γ' phase is cut by dislocation pairs. Under high temperature and low stress (982℃/248 MPa), the deformation is based on the movement of dislocations in the matrix, bowing of the matrix dislocations between the γ' precipitates and dislocation reacting to form the dislocation networks at low strain stage; while at high strain stage, the γ' phase is cut as that of 760℃/780 MPa
Key words:  Ni base single crystal superalloy      creep deformation      dislocation      
Received:  30 June 2005     
ZTFLH:  TG132.3  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I11/1215

[1] Khan T. In: Betz W, ed., High Temperature Alloys for Gas Turbines and Other Applications 1986, Dordrecht, Holland: D. Reidel Publishing Company, 1968: 21
[2] Caron P, Khan T. Mater Sci Eng, 1983; 61: 173
[3] Lin D L, Wen M. Mater Sci Eng, 1989; A113: 207
[4] Webster G A, Piearcey B J. Met Sci J, 1967; 1: 97
[5] Liu L R, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q. Acta Metall Sin, 2004; 40: 858 (刘丽荣,金涛,赵乃仁,王志辉,孙晓峰,管恒荣,胡壮麒. 金属学报,2004;40:858)
[6] Links T, Feller-Kniepmeier M. Metall Trans, 1992;23A:99
[7] Pollock T M, Argon A S. Acta Metall Mater, 1992; 40: 1
[8] Auerswald J, Mukherji D, Chen W, Wahi R P. Z Metallkd,1997; 88: 652
[9] Mukherji D, Jiao F, Chen W, Wahi R P. Acta Metall Mater, 1991; 39: 1515
[10] Milligan W, Antolovich S. Metall Trans, 1990; 22A: 2309
[11] Kear B H, Giamei A F, Silcock J M, Ham J M. Scr Metall,1986; 2: 287
[12] Veyssiere P, Douin J, Beauchamp P. Philos Mag, 1985;51A: 469
[13] Condat M, Decamps B. Scr Metall, 1987; 21: 607
[14] Caron P, Khan T, Veyssiere P. Philos Mag, 1985; 57A:859
[15] Milligan W W, Antolovich S D. Metall Trans, 1991; 22A:2309
[16] Zhang J H, Hu Z Q, Xu Y B, Wang Z G. Metall Trans, 1992; 23A: 1253
[1] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[2] ZHANG Zixuan, YU Jinjiang, LIU Jinlai. Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432[J]. 金属学报, 2023, 59(12): 1559-1567.
[3] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[4] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[5] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[6] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[7] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[8] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[9] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[10] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[11] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[12] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[13] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[14] Qingdong XU, Kejian LI, Zhipeng CAI, Yao WU. Effect of Pulsed Magnetic Field on the Microstructure of TC4 Titanium Alloy and Its Mechanism[J]. 金属学报, 2019, 55(4): 489-495.
[15] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
No Suggested Reading articles found!