Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (10): 1243-1247    DOI: 10.3724/SP.J.1037.2013.00108
Current Issue | Archive | Adv Search |
INVESTIGATION OF TEMPERATURE DEPENDENCE OF PLC EFFECT IN A NICKEL BASE SUPERALLOY
HAN Guoming1), CUI Chuanyong1), GU Yuefeng2), HU Zhuangqi1), SUN Xiaofeng1)
1) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) National Institute for Materials Science, Tsukuba 305-0047, Japan
Cite this article: 

HAN Guoming, CUI Chuanyong, GU Yuefeng, HU Zhuangqi, SUN Xiaofeng. INVESTIGATION OF TEMPERATURE DEPENDENCE OF PLC EFFECT IN A NICKEL BASE SUPERALLOY. Acta Metall Sin, 2013, 49(10): 1243-1247.

Download:  PDF(981KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The temperature dependence of Portevin-Le Chatelier (PLC) effect in a nickel base superalloy was investigated. A series of tensile tests were conducted ranging from room temperature to 900℃ at a constant rate 5×10-4 s-1. The critical strain,amplitude of stress drop, waiting time and flying time of serrated flow were analyzed in order to reveal the temperature dependence of PLC effect and its related micro-mechanism. The results showed that the normal behavior occurs as temperature changes from room temperature to 450℃, in which the critical strain of serrated flow decreases with increasing temperature while magnitude of the stress drop increases. The normal PLC effect is mainly controlled by pinning effect of solute atoms and its diffusion process. When temperature increases from 450℃ to 600℃, the critical strain of PLC effect increases and the inverse PLC effect appears. Since some dislocations are pinned by solute atoms prior to breakaway, the dominant factor of inverse PLC effect is that pinned dislocations get rid of solute atoms and move freely. With temperature increasing above 600℃, PLC effects disappear because it is difficult to form effective solute atmosphere necessary to lock mobile dislocations.

Key words:  nickel base superalloy      Portevin-Le Chatelier (PLC) effect      critical strain      dislocation      solute atom      dynamic strain aging     
Received:  07 March 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00108     OR     https://www.ams.org.cn/EN/Y2013/V49/I10/1243

[1] Cottrell A H. Philos Mag, 1953; 44: 829

[2] Beukel Den Van A. Phys Status Solidi, 1975; 30: 197
[3] McCormick P G. Acta Metall, 1972; 20: 351
[4] Kubin L P, Estrin Y. Acta Metall, 1990; 38: 697
[5] Zavattieri P D, Savic V, Hector Jr L G, Fekete J R, Tong W, Xuan Y. Int J Plast, 2009; 25: 2298
[6] Jiang H F, Chen X D, Fan Z C, Dong J, Jiang H, Lu S X. Acta Metall Sin, 2009; 45: 326
(江慧丰, 陈学东, 范志超, 董杰, 姜恒, 陆守香. 金属学报, 2009; 45: 326)
[7] Balik J, Luka P. Acta Metall, 1993; 41: 1447
[8] Jiang H, Zhang Q, Chen X, Chen Z, Jiang Z, Wu X, Fan J. Acta Metall, 2007; 55: 2219
[9] Schaarwachter W, Ebener H. Acta Metall, 1990; 38: 195
[10] Nortmann A, Schwink C. Acta Metall, 1997; 45: 2043
[11] Hayes R W, Hayes W C. Acta Metall, 1982; 30: 1295
[12] Nalawade S A, Sundararaman M, Kishore R, Shah J G. Scr Mater, 2008; 59: 991
[13] Gopinath K, Gogia A K, Kamat S V, Ramamurty U. Acta Mater, 2009; 57: 1243
[14] Brechet Y, Estrin Y. Acta Metall Mater, 1995; 43: 955
[15] Cui C Y, Gu Y F, Yuan Y, Harada H. Scr Mater, 2011; 64: 502
[16] Chihab K, Fressengeas C. Mater Sci Eng, 2003; A356: 102
[17] McCormick P G. Acta Metall, 1971; 19: 463
[18] Pink E. Acta Metall, 1989; 37: 1773
[19] Chmelik F, Pink E, Krol J, Balik J, Pesicka J, Luka P. Acta Mater, 1998; 46: 4435
[20] Fu S, Cheng T, Zhang Q, Hu Q, Cao P. Acta Mater, 2012; 60: 6650
[21] Chihab K, Estrin Y, Kubin L P, Vergnol J. Scr Mater, 1987; 21: 203
[22] Rodriguez P. Bull Mater Sci, 1984; 6: 653
[23] Charnock W. Philos Mag, 1969; 20: 427
[24] Cao P T. PhD Dissertation, University of Science and Technology of China, Hefei, 2010
(曹鹏涛. 中国科学技术大学博士学位论文, 合肥, 2010)
[25] Hayes R W. Acta Mater, 1983; 31: 365
[26] Shankar V, Valsan M, Rao K B S, Manan S L. Metall Trans, 2004; 35A: 3129
[27] Hale C L, Rollings W S, Weaver M L. Mater Sci Eng, 2001; A300: 153
[1] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[2] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[4] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[5] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[6] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[7] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[8] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[9] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[10] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[11] LIU Gang, ZHANG Peng, YANG Chong, ZHANG Jinyu, SUN Jun. Aluminum Alloys: Solute Atom Clusters and Their Strengthening[J]. 金属学报, 2021, 57(11): 1484-1498.
[12] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[13] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[14] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[15] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
No Suggested Reading articles found!