|
|
Phase Structure and Electrochemical Properties of La--Mg--Ni System AB3 Type Hydrogen Storage Electrode Alloys |
LIAO Bin; LEI Yongquan; Lü Guanglie;CHEN Lixin; GE Hongwei; PAN Hongge |
Department of Materials and Engineering; Zhejiang University; Hangzhou 310027 |
|
Cite this article:
LIAO Bin; LEI Yongquan; Lü Guanglie; CHEN Lixin; GE Hongwei; PAN Hongge. Phase Structure and Electrochemical Properties of La--Mg--Ni System AB3 Type Hydrogen Storage Electrode Alloys. Acta Metall Sin, 2005, 41(1): 41-.
|
Abstract XRD Rietveld analysis shows that LaxMg3-xNi9
(x=1.0---2.3) alloys consist of a main phase with
hexagonal PuNi3-type structure and a few impurity phases
(mainly LaNi5 and MgNi2, increasing
x leads to an increase in both
the lattice parameters and the unit cell volume of the main
phase. The hydride of the alloys preserves the PuNi3
type structure, but shows a large unit cell volume
expansion. The electrochemical measures indicate
that the desorption plateau pressure Prm of the
alloys decreases noticeably as x increases, while
the maximum discharge capacity Cmax
increases from 88.3 (x=1.0) to
397.5 (x=2.0),
and then decreases to 230 mA.h/g
(x=2.3). For the alloys
with Cmax>348 mA.h/g (x=1.7-2.2),
the high-rate
dischargeability (HRD) of the electrodes at i=400-1200 mA/g
decreases with increaseing x. The slower decrease of HRD
is mainly attributed to the decrease of
eletrocatalytic activity due to the
charge--transfer reaction, and the more rapid
decrease of HRD of the alloys with $x>$2.0 is
related to the lower hydrogen diffusion rate in the
bulk of alloy. The rate of capacity retention
(S100) of the alloys after 100 charge/ discharge
cycles is around 55.7%-62.9%, the rather fast
cycling capacity degradation is
mainly due to the corrosion of La and Mg and the large
unit cell volume expansion in the hydride phase.
|
Received: 13 January 2004
|
|
[1] Sakai T, Uehara I, Iwakura H. J Alloy Compd, 1999; 293-395: 762 [2] Ovshinsky S R, Feteenko M A, Ross J. Science, 1993, 260:176 [3] Kim D M, Jang K J, Lee J Y. J Alloy Compd, 1999; 293-395:762 [4] Lei Y Q, Wu Y M, Yang Q M, Wu J, Wang Q D. Z PhysChem, 1994; 183: 379 [5] Iwakura C, Inoue H, Zhang S G, Nohaza S. J AlloysCompd, 1998; 270: 142 [6] Tsukahara M, Takahashi K, Mishima T, Sakai T, Miya-mura H, Kuriyama N, Uehara I. J Alloys Compd, 1995;224: 162 [7] Reilly J J. In: Besenhard J O ed, Handbook of BatteryMaterials, New York: Wiley, 2000: 154 [8] Kadir K, Sakai T, Uahara I. J Alloys Compd, 1997; 257:115 [9] Kadir K, Nuriyama N, Sakai T, Uehara I, Eriksson L. JAlloys Compd, 1999; 284: 145 [10] Kadir K, Sakai T, Uahara I. J Alloys Compd, 1999; 287:264 [11] Kadir K, Sakai T, Uahara I. J Alloys Compd, 2000; 302:112 [12] Chen J, Takeshita H T, Tanaka H, Kuriyama N, Sakai T.J Alloys Compd, 2000; 302: 304 [13] Chen J, Kuriyama N, Takeshita H T, Tanaka H, Sakai T,Haruta M. Electrochem Solid-State Lett, 2000; 3: 249 [14] Kohno T, Yoshida H, Kawashima F, Inaba T, Sakai I, Yamamoto M, Kanda M. J Alloys Compd, 2000; 311: L5 [15] Liu Y F, Pan H G, Gao M X, Zhu Y F, Lei Y Q. Acta Metall Sin, 2003; 39: 666(刘永锋,潘洪革,高明霞,朱云峰,雷永泉.金属学报,2003;39:666) [16] Balej J. Int J Hydrogen Energy, 1985; 10: 365 [17] Notten P H L, Hokkeling P. J Electrochem Soc, 1991; 138:1877 [18] Zheng G, Popov B N, White R E. J Electrochem Soc,1995; 142: 2695 [19] Virkar A V, Raman A. J Less-Common Met, 1969; 18:59 [20] Iwakura C, Oura T, Inouse H, Mastsuoka M. ElectrochimActa, 1996; 41(1):117 [21] Iwakura C, Matsuoka M, Asai K, Kohno T. J PowerSource, 1992; 38: 335 [22] Sun D L, Lei Y Q, Liu W H, Jiang J J, Wu J, Wang Q D.J Alloys Compd, 1995; 231: 621 [23] Willems J J. Philips J Res, 1984; 39(Suppl.1): 1 [24] Liao B, Lei Y Q, Chen L X, Lu G L, Pan H G, Wang QD. Submitted to J Alloys Compd |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|