Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (1): 41-    DOI:
Research Articles Current Issue | Archive | Adv Search |
Phase Structure and Electrochemical Properties of La--Mg--Ni System AB3 Type Hydrogen Storage Electrode Alloys
LIAO Bin; LEI Yongquan; Lü Guanglie;CHEN Lixin; GE Hongwei; PAN Hongge
Department of Materials and Engineering; Zhejiang University; Hangzhou 310027
Cite this article: 

LIAO Bin; LEI Yongquan; Lü Guanglie; CHEN Lixin; GE Hongwei; PAN Hongge. Phase Structure and Electrochemical Properties of La--Mg--Ni System AB3 Type Hydrogen Storage Electrode Alloys. Acta Metall Sin, 2005, 41(1): 41-.

Download:  PDF(386KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  XRD Rietveld analysis shows that LaxMg3-xNi9 (x=1.0---2.3) alloys consist of a main phase with hexagonal PuNi3-type structure and a few impurity phases (mainly LaNi5 and MgNi2, increasing x leads to an increase in both the lattice parameters and the unit cell volume of the main phase. The hydride of the alloys preserves the PuNi3 type structure, but shows a large unit cell volume expansion. The electrochemical measures indicate that the desorption plateau pressure Prm of the alloys decreases noticeably as x increases, while the maximum discharge capacity Cmax increases from 88.3 (x=1.0) to 397.5 (x=2.0), and then decreases to 230 mA.h/g (x=2.3). For the alloys with Cmax>348 mA.h/g (x=1.7-2.2), the high-rate dischargeability (HRD) of the electrodes at i=400-1200 mA/g decreases with increaseing x. The slower decrease of HRD is mainly attributed to the decrease of eletrocatalytic activity due to the charge--transfer reaction, and the more rapid decrease of HRD of the alloys with $x>$2.0 is related to the lower hydrogen diffusion rate in the bulk of alloy. The rate of capacity retention (S100) of the alloys after 100 charge/ discharge cycles is around 55.7%-62.9%, the rather fast cycling capacity degradation is mainly due to the corrosion of La and Mg and the large unit cell volume expansion in the hydride phase.
Key words:  La--Mg--Ni      hydrogen storage      alloy      
Received:  13 January 2004     
ZTFLH:  TG139  
  TG113  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I1/41

[1] Sakai T, Uehara I, Iwakura H. J Alloy Compd, 1999; 293-395: 762
[2] Ovshinsky S R, Feteenko M A, Ross J. Science, 1993, 260:176
[3] Kim D M, Jang K J, Lee J Y. J Alloy Compd, 1999; 293-395:762
[4] Lei Y Q, Wu Y M, Yang Q M, Wu J, Wang Q D. Z PhysChem, 1994; 183: 379
[5] Iwakura C, Inoue H, Zhang S G, Nohaza S. J AlloysCompd, 1998; 270: 142
[6] Tsukahara M, Takahashi K, Mishima T, Sakai T, Miya-mura H, Kuriyama N, Uehara I. J Alloys Compd, 1995;224: 162
[7] Reilly J J. In: Besenhard J O ed, Handbook of BatteryMaterials, New York: Wiley, 2000: 154
[8] Kadir K, Sakai T, Uahara I. J Alloys Compd, 1997; 257:115
[9] Kadir K, Nuriyama N, Sakai T, Uehara I, Eriksson L. JAlloys Compd, 1999; 284: 145
[10] Kadir K, Sakai T, Uahara I. J Alloys Compd, 1999; 287:264
[11] Kadir K, Sakai T, Uahara I. J Alloys Compd, 2000; 302:112
[12] Chen J, Takeshita H T, Tanaka H, Kuriyama N, Sakai T.J Alloys Compd, 2000; 302: 304
[13] Chen J, Kuriyama N, Takeshita H T, Tanaka H, Sakai T,Haruta M. Electrochem Solid-State Lett, 2000; 3: 249
[14] Kohno T, Yoshida H, Kawashima F, Inaba T, Sakai I, Yamamoto M, Kanda M. J Alloys Compd, 2000; 311: L5
[15] Liu Y F, Pan H G, Gao M X, Zhu Y F, Lei Y Q. Acta Metall Sin, 2003; 39: 666(刘永锋,潘洪革,高明霞,朱云峰,雷永泉.金属学报,2003;39:666)
[16] Balej J. Int J Hydrogen Energy, 1985; 10: 365
[17] Notten P H L, Hokkeling P. J Electrochem Soc, 1991; 138:1877
[18] Zheng G, Popov B N, White R E. J Electrochem Soc,1995; 142: 2695
[19] Virkar A V, Raman A. J Less-Common Met, 1969; 18:59
[20] Iwakura C, Oura T, Inouse H, Mastsuoka M. ElectrochimActa, 1996; 41(1):117
[21] Iwakura C, Matsuoka M, Asai K, Kohno T. J PowerSource, 1992; 38: 335
[22] Sun D L, Lei Y Q, Liu W H, Jiang J J, Wu J, Wang Q D.J Alloys Compd, 1995; 231: 621
[23] Willems J J. Philips J Res, 1984; 39(Suppl.1): 1
[24] Liao B, Lei Y Q, Chen L X, Lu G L, Pan H G, Wang QD. Submitted to J Alloys Compd
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[7] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[8] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[9] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[10] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[11] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[12] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[13] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[14] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[15] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
No Suggested Reading articles found!