Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (1): 23-    DOI:
Research Articles Current Issue | Archive | Adv Search |
Effects of Twin Size on the Dislocation Configuration During Cyclic Deformation of Polycrystalline Twin Copper
GUO Xiaolong; LU Lei; LI Shouxin
Shenyang National Laboratory for Materials Science; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

GUO Xiaolong; LU Lei; LI Shouxin. Effects of Twin Size on the Dislocation Configuration During Cyclic Deformation of Polycrystalline Twin Copper. Acta Metall Sin, 2005, 41(1): 23-.

Download:  PDF(299KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Symmetrical push-pull fatigue tests were conducted on as--electrodeposited polycrystalline twin copper. Different dislocation configurations were formed in twins with different widths. When the twin width $W_{\rm t} >1~ \mu$m, loop patches and walls were found in twins, the same as that in single crystal; when 1um>W>200 nm, ladder--like structures formed in twin, which like persistent slip bands (PSBs); when 200 nm>W>20 nm, only some dislocation fragments were found; when W<20 nm, no stable crystal dislocation segments exist in the twin.
Key words:  Cu      twin      fatigue      size effect      
Received:  19 February 2004     
ZTFLH:  TG111.8  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I1/23

[1] Laird C, Charsley P, Mugurabi H. Mater Sci Eng. 1986;81: 433
[2] Jia W P, Li S X, Wang Z G, Li X W, Li G Y. Acta Mater,1999; 47: 2165
[3] Feltner C E, Laird C. Aata Metall, 1967; 15:1633
[4] Vinogradov A, Kaneko Y, Kitagawa K, Hashimoto S, Stol-yarov V, Valiev R. Scr Mater, 1997; 36: 1345
[5] Witney A B, Sanders P G, Weertman J R, Eastman J A.Scr Metall Mater, 1995; 33: 2025
[6] Lu L, Shen Y F, Chen X H, Qian L H, Lu K. Science,2004; 16: 422
[7] Guo X L, Shen Y F, Lu L, Li S X. Aata Metall Sin, 2004,40: 337(郭小龙,申勇峰,卢磊,李守新.金属学报,2004;40:337)
[8] Wu S D, Wang Z G, Jiang C B, Li G Y, Alexandrov I V,Valiev R Z. Scr Mater, 2003; 48: 1605
[9] Kawazoe H, Yoshida M, Basinski Z S, Niewczas M. ScrMater. 1999; 40: 639
[10] Konopka K, Mizera J. Wyrzykowski J W. J Mater ProcTechnol, 2000; 99: 255
[11] Neumann P. Fatigue. In: Cahn R W, Haasen P eds, Physical Metallurgy, Amsterdam: Elsevier Science, 1983: 1554
[1] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[2] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[6] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[7] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[8] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[9] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[10] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[13] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[14] WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan. Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism[J]. 金属学报, 2023, 59(5): 679-692.
[15] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
No Suggested Reading articles found!