Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (5): 515-517     DOI:
Research Articles Current Issue | Archive | Adv Search |
Effects of TiC on the Conductivities of Titania Slag
ZHONG Hexiang; WANG Shulan; ZHANG Lijun
Department of Chemistry; Northeastern University; Shenyang 110004
Cite this article: 

ZHONG Hexiang; WANG Shulan; ZHANG Lijun. Effects of TiC on the Conductivities of Titania Slag. Acta Metall Sin, 2004, 40(5): 515-517 .

Download:  PDF(3010KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  By an a.c. impedance technique, the effects of TiC particle on the conductivities of titania slag with composition of 24.3%CaO-23.3%SiO2-13.8%Al2O3-15.3%MgO-23.3%TiO2 were studied in the temperature range of 1723 K to 1633 K. TiC particles in the slag are charge carriers and decrease the conductivities of the slag. The slag containing 0.5%TiC has the lowest conductivity. Increasing the particle size, the conductivities increase. The rate constants and the activation energy of the crystallization reaction of CaTiO3 were calculated based on the first-order kinetic equation.
Key words:  titania slag      conductivity      TiC      
Received:  20 August 2003     
ZTFLH:  TG534.2  
  TG534.1  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I5/515

[1] Xu C D, Lin R. Iron Steel Vanadium Titanium, 1980; 1: 1(徐采栋,林蓉.钢铁钒钛,1980;1:1)
[2] Ma J Y, Sun X W, Sheng S X. Iron Steel, 2000; 35:4(马家源,孙希文,盛世雄.钢铁,2000;35:4)
[3] Wan X, Pei H N, Bai C G, Zhou P T. J Chongqing Univ (Nat Sci), 2000; 23:37(万新,裴鹤年,白晨光,周培土.重庆大学学报(自然科学版),2000;23:37)
[4] Bai C G, Pei H N, Zhao S J, Zhou P T. Iron Steel Vanadium Titanium, 1995; 16:6(白晨光,裴鹤年,赵诗金,周培土.钢铁钒钛,1995;16:6)
[5] Wang S L, Li G Q, Sui Z T. ISIJ Int, 1999; 39:11
[6] Lou T P, Li Y H, Li L S, Sui Z T. Acta Metall Sin, 2000; 36:141(娄太平,李玉海,李辽沙,隋智通.金属学报,2000;36:141)
[7] Hu Y, L ü R D, Liu G J, Lu Y N. Physical Chemist. Vol.2, 3nd ed., Beijing: High Education Press, 1988:232(胡英,吕瑞东,刘国杰,陆曜南.物理化学(下册).第3版,北京:高等教育出版社,1988;223)
[8] Allibert M. Verein Deutscher Eisenhuttenleute (VDEH). Slag Atlas. 2nd ed., Diisseldorf: Verlag Stahleisen GmbH Press, 1995:2J
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[3] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[4] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[5] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[6] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[7] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[8] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[9] LI Qian, LIU Kai, ZHAO Tianliang. Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress[J]. 金属学报, 2023, 59(6): 829-840.
[10] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[11] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[12] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[13] XU Lei, TIAN Xiaosheng, WU Jie, LU Zhengguan, YANG Rui. Microstructure and Mechanical Properties of Inconel 718 Powder Alloy Prepared by Hot Isostatic Pressing[J]. 金属学报, 2023, 59(5): 693-702.
[14] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[15] ZHANG Zhidong. Exact Solution of Ferromagnetic Three-Dimensional (3D) Ising Model and Spontaneous Emerge of Time[J]. 金属学报, 2023, 59(4): 489-501.
No Suggested Reading articles found!