Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (2): 159-162     DOI:
Research Articles Current Issue | Archive | Adv Search |
Micro-Simulation of Crack Tip Plastic Zone and Dislocation-Free Zone
QIAN Caifu; JIANG Zhongjun; CHEN Ping; DUAN Chenghong; CUI Wenyong
Department of Process Equipment and Control Engineering; Beijing University of Chemical Technology; Beijing 100029
Cite this article: 

QIAN Caifu; JIANG Zhongjun; CHEN Ping; DUAN Chenghong; CUI Wenyong. Micro-Simulation of Crack Tip Plastic Zone and Dislocation-Free Zone. Acta Metall Sin, 2004, 40(2): 159-162 .

Download:  PDF(2558KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Edge dislocation emissions from Mode I, Mode II and mixed-mode crack tips along multiple inclined slip planes are simulated, and plastic zones as well as dislocation--free zones are obtained. It is found that the shape of the Mode II plastic zone is quite different from that obtained based on von Mises yielding criterion and consists of three parts in which the biggest one locates in front of the crack tip. For Mode I crack, however, a similar plastic zone is obtained. Under the same magnitudes of applied stress, the plastic zone of Mode II crack is much larger than that of Mode I crack, and the plastic zone of a mixed--mode crack is mainly affected by the Mode II component. Dislocation--free zones exist around all types of crack tips, which have similar shapes as the corresponding plastic zones.
Key words:  dislocation emission      crack      plastic zone      
Received:  24 February 2003     
ZTFLH:  TG111.91  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I2/159

[1] Ohr S M. Mater Sci Eng, 1985; 72: 1
[2] Chiao Y H, Clarke D R. Acta Metall, 1989; 37: 203
[3] Zielinski W, Lii M J, Gerberich W W. Acta Metall Mater, 1992; 40: 2861
[4] Marsh P G, Zielinski W, Huang H, Gerbrich W W. Acta Metall Mater, 1992; 40: 2883
[5] Li C, Zhao H, Zhan Z, Zhou H. Eng Fract Mech, 1992; 43: 1009
[6] Chia K Y, Burns S J. Scr Metall, 1984; 18: 467
[7] Fu R, Long Q Y, Zhang T Y, Lung C W. J Phys, 1989; 22D: 991
[8] Foeke T, Gerberich W W. Scr Metall Mater, 1990; 24: 553
[9] Bilby B A, Cottrell A H, Swinden K H. Proc R Soc London, 1963; 272: 304
[10] Chang S J, Ohr S M. J Appl Phys, 1981; 52: 7174
[11] Dai S H, Li J C M. Scr Metall, 1982; 16: 183
[12] Majumdar B S, Burns S J. Acta Metall, 1981; 29: 579
[13] Zhao R H, Dai S H, Li J C M. Int J Fract, 1985; 29: 3
[14] Zhao R H, Li J C M. J Eng Mater Technol, 1985; 107A: 277
[15] Zhao R H, Li J C M. J Appl Phys, 1985; 58B: 4117
[16] Pippan R. Scr Metall, 1989; 23: 1575
[17] Li J, Li J C M. Mater Sci Eng, 1990; 129A: 167
[18] Li J, Li J C M. Mater Sci Eng, 1990; 129A: 175
[19] Yokobori A T Jr, Isogai T. Yokobori T. Acta Metall Mater, 1993; 41: 1405
[20] Loyola de Oliveira M A, Michot G. Mater Sci Eng, 1994; 176A: 139
[21] Lakshmanan V, Li J C M. Mater Sci Eng, 1988: 104A: 95
[22] Qian C F, Li J C M. Mech Mater, 1996; 24A: 1
[23] Qian C F, Li J C M. Mech Mater, 1996; 24A: 11
[24] Chen Q Z, Chu W Y, Hsiao C M. Acta Metall Mater. 1995; 43: 4371
[25] Qiao L J, Mao X, Chen Q Z. Metall Mater Trans, 1995; 26A: 1461
[26] Zhang Y, Wang Y B, Chu W Y. Scr Metall Mater, 1994; 31: 279
[27] Chen Q Z, Gao K W, Zhang Y, Chu W Y. Fatigue Fract Eng Mater Struct, 1998; 21: 1415
[28] Qian C F, Qiao L J, Chu W Y. Sci Chin, 2000; 43E: 421
[29] He Q Z, Li Z N. Engineering Fracture Mechanics. Beijing: Beijing University of Aeronautic and Astronautic Press, 1993: 47(何庆芝,郦正能.工程断裂力学.北京:北京航空航天大学出版社,1993:47)
[30] Ha K F. Physical Basis for Fracture. Beijing: Science Press, 2000: 150(哈宽富.断裂物理基础.北京:科学出版社,2000:150)
[1] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[2] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[3] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[4] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[5] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[6] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[7] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[8] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[9] ZHU Guoliang, KONG Decheng, ZHOU Wenzhe, HE Jian, DONG Anping, SHU Da, SUN Baode. Research Progress on the Crack Formation Mechanism and Cracking-Free Design of γ' Phase Strengthened Nickel-Based Superalloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 16-30.
[10] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[11] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[12] YANG Qinzheng, YANG Xiaoguang, HUANG Weiqing, SHI Duoqi. Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. 金属学报, 2022, 58(5): 683-694.
[13] YU Chun, XU Jijin, WEI Xiao, LU Hao. Research Status of Ductility-Dip Crack Occurring in Nuclear Nickel-Based Welding Materials[J]. 金属学报, 2022, 58(4): 529-540.
[14] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[15] GUO Haohan, YANG Jie, LIU Fang, LU Rongsheng. Constraint Related Fatigue Crack Initiation Life of GH4169 Superalloy[J]. 金属学报, 2022, 58(12): 1633-1644.
No Suggested Reading articles found!