Please wait a minute...
Acta Metall Sin  1998, Vol. 34 Issue (9): 987-991    DOI:
Current Issue | Archive | Adv Search |
LASER CLAD TiC_p/Ni ALLOY FUNCTIONALLY GRADIENT COATING AND ITS IN-SITU FORMATION MECHANISM
PEI Yutao(National Center of Laser Technology; Beijing Polytechnic University; Beijing 100022)Correspondent: PEI Yutao; associate professor Tel: (010)67391875; Fax: (010)67392297
Cite this article: 

PEI Yutao(National Center of Laser Technology; Beijing Polytechnic University; Beijing 100022)Correspondent: PEI Yutao; associate professor Tel: (010)67391875; Fax: (010)67392297. LASER CLAD TiC_p/Ni ALLOY FUNCTIONALLY GRADIENT COATING AND ITS IN-SITU FORMATION MECHANISM. Acta Metall Sin, 1998, 34(9): 987-991.

Download:  PDF(1263KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A functionally gradient TiC/Ni alloy composite coating was produced by one step laser cladding with pre-placed mixture powder on 1045 steel substrate. The clad layer consists of TiC particles, γ-Ni primary dendrites and interdendritic eutectics. From the bottom to the top of the clad layer, TiC particles exhibit a continuous increase both in size (from 0.8μm to 4.5μm) and in volume fraction (from 4% to 33%), and their morphology changes correspondingly from small globe to coarse flower-like cluster. The rapid coarsening of TiC clusters during the solidification of laser pool results from the collision and sintering of particles. The preferntial engulfing to a small cluster moving at slower speed by liquid/solid front leads to in-situ formation of the gradient structure of the coating.
Key words:  functionally gradient coating      in-situ formation      TiC particle      laser cladding     
Received:  18 September 1998     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1998/V34/I9/987

1Jasim K M, Rawlings R D, West D R P J Mater Sci, 1993; 28: 2820
2 Abboud J H, Rawlings R D, West D R F. Mater Sci Technol, 1994; 10: 414
3 Wu P, Zhou C Z, Tang X N. SurfCoat Technol, 1995; 73: 111
4Flemings M C.Solidification Processing. New York: McGraw-Hill, 1974;pp. 194
5 Let T C, Ouyang J H, Pei Y T, Zhou Y. Mater Sci Technol, 1995; 11: 520z
[1] FENG Kai, GUO Yanbing, FENG Yulei, YAO Chengwu, ZHU Yanyan, ZHANG Qunli, LI Zhuguo. Microstructure Controlling and Properties of Laser Cladded High Strength and High Toughness Fe-Based Coatings[J]. 金属学报, 2022, 58(4): 513-528.
[2] ZHAO Wanxin, ZHOU Zheng, HUANG Jie, YANG Yange, DU Kaiping, HE Dingyong. Microstructure and Frictional Wear Behavior of FeCrNiMo Alloy Layer Fabricated by Laser Cladding[J]. 金属学报, 2021, 57(10): 1291-1298.
[3] TONG Wenhui, ZHANG Xinyuan, LI Weixuan, LIU Yukun, LI Yan, GUO Xuming. Effect of Laser Process Parameters on the Microstructure and Properties of TiC Reinforced Co-Based Alloy Laser Cladding Layer[J]. 金属学报, 2020, 56(9): 1265-1274.
[4] ZHANG Yu, LOU Liyan, XU Qinglong, LI Yan, LI Changjiu, LI Chengxin. Microstructure and Wear Resistance of Ni-Based WC Coating by Ultra-High Speed Laser Cladding[J]. 金属学报, 2020, 56(11): 1530-1540.
[5] Li FAN, Haiyan CHEN, Yaohua DONG, Xueying LI, Lihua DONG, Yansheng YIN. Corrosion Behavior of Fe-Based Laser Cladding Coating in Hydrochloric Acid Solutions[J]. 金属学报, 2018, 54(7): 1019-1030.
[6] Yinghua LIN, Ying YUAN, Liang WANG, Yong HU, Qunli ZHANG, Jianhua YAO. Effect of Electric-Magnetic Compound Field on the Microstructure and Crack in Solidified Ni60 Alloy[J]. 金属学报, 2018, 54(10): 1442-1450.
[7] Wenhui TONG,Zilong ZHAO,Xinyuan ZHANG,Jie WANG,Xuming GUO,Xinhua DUAN,Yu LIU. Microstructure and Properties of TiC/Co-Based Alloyby Laser Cladding on the Surface of NodularGraphite Cast Iron[J]. 金属学报, 2017, 53(4): 472-478.
[8] Bin LIU,Kai GONG,Yanxin QIAO,Shiyun DONG. EVALUATION OF INFLUENCE OF PRESET CRACK BURIAL DEPTH ON STRESS OF LASER CLADDING COATING WITH METAL MAGNETIC MEMORY[J]. 金属学报, 2016, 52(2): 241-248.
[9] Binshi XU,Jinxiang FANG,Shiyun DONG,Xiaoting LIU,Shixing YAN,Chaoqun SONG,Dan XIA. HEAT-AFFECTED ZONE MICROSTRUCTURE EVOLU- TION AND ITS EFFECTS ON MECHANICAL PROPERTIES FOR LASER CLADDING FV520B STAINLESS STEEL[J]. 金属学报, 2016, 52(1): 1-9.
[10] LIN Yinghua, LEI Yongping, FU Hanguang, LIN Jian. EFFECT OF Ni ADDITION ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF TiB2/TiB TITANIUM MATRIX COMPOSITE COATINGS[J]. 金属学报, 2014, 50(12): 1520-1528.
[11] LIN Yinghua, LEI Yongping, FU Hanguang, LIN Jian. LASER IN SITU SYNTHESIZED TITANIUM DIBORIDE AND NITINOL REINFORCE TITANIUM MATRIX COMPOSITE COATINGS[J]. 金属学报, 2014, 50(12): 1513-1519.
[12] WANG Chuanqi, LIU Hongxi, ZHOU Rong, JIANG Yehua, ZHANG Xiaowei. CHARACTERISTIC BEHAVIORS OF PARTICLE PHASES IN NiCrBSi-TiC COMPOSITE COATING BY LASER CLADDING ASSISTED BY MECHANICAL VIBRATION[J]. 金属学报, 2013, 49(2): 221-228.
[13] XU Hengdong ZHAO Haiyan S¨orn Ocylok Igor Kelbassa. STUDY ON CRACKS IN LASER DIRECT–CLADDED TITANIUM LAYER ON LOW CARBON STEEL[J]. 金属学报, 2012, 48(2): 142-147.
[14] ZHANG Xiaowei LIU Hongxi JIANG Yehua WANG Chuanqi. LASER IN SITU SYNTHESIZED TiN/Ti3Al COMPOSITE COATINGS[J]. 金属学报, 2011, 47(8): 1086-1093.
[15] ZHANG Hui PAN Ye HE Yizhu. LASER CLADDING FeCoNiCrAl2Si HIGH–ENTROPY ALLOY COATING[J]. 金属学报, 2011, 47(8): 1075-1079.
No Suggested Reading articles found!