Please wait a minute...
Acta Metall Sin  1998, Vol. 34 Issue (11): 1143-1148    DOI:
Current Issue | Archive | Adv Search |
ELEVATED TEMPERATURE DEFORMATION BEHAVIOR OF IN SITU MULTIPHASE COMPOSITE (NiAl-28Cr-6Mo)TiC
JIANG Dongtao;GUO Jianting;LI Gusong;SHI Changxu (Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015)
Cite this article: 

JIANG Dongtao;GUO Jianting;LI Gusong;SHI Changxu (Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015). ELEVATED TEMPERATURE DEFORMATION BEHAVIOR OF IN SITU MULTIPHASE COMPOSITE (NiAl-28Cr-6Mo)TiC. Acta Metall Sin, 1998, 34(11): 1143-1148.

Download:  PDF(1062KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  An intermetallic matrix composite (NiAl-28Cr-6Mo)-TiC has been successfully fabricated by using reaction synthesis method. The elevated temperature deformation behavior of the in situ multiphase composite was investigated. The flow stress decreases with increasing temperature or decreasing initial strain rate. The deformation behavior of the composite can be adequately described by the power law. The stress exponent and activation energy are calculated and compared with other similar NiAl-based composites.
Key words:  intermetallic      NiAl      in situ composite      high temperature deformation     
Received:  18 November 1998     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1998/V34/I11/1143

1Darolia R, Walston W S, Nathal M V. In: Kissinger R D Deye D J, Anton D L, Cetel A D, Nathal M V,Pollock T M, Woodford D A eds. Superalloys 1996. The Minerals, Metals, Materials Society, 1996: 561
2 Alman D E, Stoloff N S. Mater Res Soc Proc, 1991;213:989
3Dunand D C. Materials and Manufacturening processes,1995;10:373
4 Bowden D M,Meschter P J,Yu L H,Meyers M A,Thadhani N N.JOM,1988:40(9):18
5Dunmead S D, Munir Z A,Holt J B,Kingman D D J Mater Sci,1991;26:2410
6 Dey G K and Sekhar J A. Metall Trans,1997;28B:905
7 Whittenberger J D,Viswanadham R K,Mannan S K,Sprissler B J Mater Sci,1990;225:35
8 Whittenberger J D,Kumar S,Mannan S K,Viswanadham R K.J Mater Sci Lett,1999;9:326
9 Xing Z P, Dai J Y, Guo J T; An G Y, Hu Z Q .Scr,Metall Mate,1994;31:1141
10 Johnson D R,Chen X F,Oliver B F,Noebe R D,Whittenberger J D. Intermetallics, 1995; 3:99
11 Whittenberger J D,Viswanadham R K,Mannan S K,Sprissler B. J Mater Sci,1900;25:35
12 Lu T C, Yang J, Suo Z, Evans A G, Hecht R,Mehrabian R.Acta Metall Matet 1991;39:1883
13 Whittenberger J D, Reviere R; Noebe R D, Oliver B F. Scr Metall Mater 1992;26:987
14 Whittenberger J D; Westfall L J,Nathal M V.Scr Metall,1989;23:2127
15 Zeumer B,Wunnike-Sanders W,Sauthoff G.Mater Sci Eng,1995;A192/193:817
[1] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[2] ZHOU Lijun, WEI Song, GUO Jingdong, SUN Fangyuan, WANG Xinwei, TANG Dawei. Investigations on the Thermal Conductivity of Micro-Scale Cu-Sn Intermetallic Compounds Using Femtosecond Laser Time-Domain Thermoreflectance System[J]. 金属学报, 2022, 58(12): 1645-1654.
[3] LIU Ze, NING Hanwei, LIN Zhangqian, WANG Dongjun. Influence of Spark Plasma Sintering Parameters on the Microstructure and Room-Temperature Mechanical Properties of NiAl-28Cr-5.5Mo-0.5Zr Alloy[J]. 金属学报, 2021, 57(12): 1579-1587.
[4] GONG Shengkai, SHANG Yong, ZHANG Ji, GUO Xiping, LIN Junpin, ZHAO Xihong. Application and Research of Typical Intermetallics-Based High Temperature Structural Materials in China[J]. 金属学报, 2019, 55(9): 1067-1076.
[5] Hua JI,Yunlai DENG,Hongyong XU,Weiqiang GUO,Jianfeng DENG,Shitong FAN. The Influence of Welding Line Energy on the Microstructure and Property of CMT Overlap Joint of 5182-Oand HC260YD+Z[J]. 金属学报, 2019, 55(3): 376-388.
[6] Liqun CHEN, Zhengchen QIU, Tao YU. Effect of Ru on the Electronic Structure of the [100](010) Edge Dislocation in NiAl[J]. 金属学报, 2019, 55(2): 223-228.
[7] CAO Lihua, CHEN Yinbo, SHI Qiyuan, YUAN Jie, LIU Zhiquan. Effects of Alloy Elements on the Interfacial Microstructure and Shear Strength of Sn-Ag-Cu Solder[J]. 金属学报, 2019, 55(12): 1606-1614.
[8] HE Xianmei, TONG Liuniu, GAO Cheng, WANG Yichao. Effect of Nd Content on the Structure and Magnetic Properties of Si(111)/Cr/Nd-Co/Cr Thin Films Prepared by Magnetron Sputtering[J]. 金属学报, 2019, 55(10): 1349-1358.
[9] Min ZHANG, Erlong MU, Xiaowei WANG, Ting HAN, Hailong LUO. Microstructure and Mechanical Property of the Welding Joint of TA1/Cu/ X65 Trimetallic Sheets[J]. 金属学报, 2018, 54(7): 1068-1076.
[10] Huijun KANG, Jinling LI, Tongmin WANG, Jingjie GUO. Growth Behavior of Primary Intermetallic Phases and Mechanical Properties for Directionally Solidified Al-Mn-Be Alloy[J]. 金属学报, 2018, 54(5): 809-823.
[11] Yanchun ZHAO, Hao SUN, Chunling LI, Jianlong JIANG, Ruipeng MAO, Shengzhong KOU, Chunyan LI. High Temperature Deformation Behavior of High Strength and Toughness Ti-Ni Base Bulk Metallic Glass Composites[J]. 金属学报, 2018, 54(12): 1818-1824.
[12] Lin GENG, Hao WU, Xiping CUI, Guohua FAN. Recent Progress on the Fabrication of TiAl-Based Composites Sheet by Reaction Annealingof Elemental Foils[J]. 金属学报, 2018, 54(11): 1625-1636.
[13] Jianxue LIU, Wenjun XI, Neng LI, Shujie LI. Effect of Interfacial Energy on Distribution of Nanoparticle in the Melt During the Preparation of Fe-Based ODS Alloys by Thermite Reaction[J]. 金属学报, 2017, 53(8): 1011-1017.
[14] Xuan YU, Zhihao ZHANG, Jianxin XIE. Microstructure, Ordered Structure and Warm TensileDuctility of Fe-6.5%Si Alloy with Various Ce Content[J]. 金属学报, 2017, 53(8): 927-936.
[15] Ning ZHAO,Jianfeng DENG,Yi ZHONG,Luqiao YIN. Evolution of Interfacial Intermetallic Compounds in Ni/Sn-xCu/Ni Micro Solder Joints Under Thermomigration During Soldering[J]. 金属学报, 2017, 53(7): 861-868.
No Suggested Reading articles found!