Please wait a minute...
Acta Metall Sin  1997, Vol. 33 Issue (9): 897-902    DOI:
Current Issue | Archive | Adv Search |
MICROSTRUCTURE EVOLUTION AND ACTIVIATION ENERGY IN SUPERPLASTICITY OF FeAl INTERMETALLIC ALLOYS
LI Dingqiang;LIN Dongliang;LIU Junliang;LIU Yi(The Public Laboratory of the State Education Commission for High Temperature Materials and High temperature Tests;Shanghai Jiaotong University; Shanghai 200030)
Cite this article: 

LI Dingqiang;LIN Dongliang;LIU Junliang;LIU Yi(The Public Laboratory of the State Education Commission for High Temperature Materials and High temperature Tests;Shanghai Jiaotong University; Shanghai 200030). MICROSTRUCTURE EVOLUTION AND ACTIVIATION ENERGY IN SUPERPLASTICITY OF FeAl INTERMETALLIC ALLOYS. Acta Metall Sin, 1997, 33(9): 897-902.

Download:  PDF(1865KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The microstructure evolution of large-grained FeAl intermetallic alloys during superplastic deformation has been investigated. The superplastic deformation exhibits characteristics of conventional grain-fining. During superplastic deformation, the shape of original grains changes significantly at first, then many subgrain boundaries form in the grains, and after that the misorientation of every two adjacent subgrains increases. In a whole,it results in the dramatical decrease of the grain size of FeAl alloys after the supefplastic deformation to fracture. The deformation activation energy was measured to be about 370,290 and 260 kJ. mo-1 for Fe-36.5Al, Fe-36.5Al-1Ti and Fe-36.5Al-2Ti alloys,respectively, which are much lower than the creep activation energy previously measured in FeAl alloys. Low deformation activation energy indicates that the superplastic deformation process may be controlled by subgrain boundary and grain boundary diffusion.
Key words:  FeAl intermetallic alloy      superplasticity      microstructure      grain boundary      deformation activation energy     
Received:  18 September 1997     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1997/V33/I9/897

1Liu C T,Lee E H,McKamey C G.Son Metall Mater,1989;23:875
2Liu C T,McKamey C G,Lee E H.Scri Metall Mater 1990; 24: 385
3Li D Q.Shan A D,Liu Y,Lin D L Scri Metall Mater,1995;33:681
4郦定强,刘毅,单爱党,林栋梁.金属学报,1996;32:417
5Lin D L,Shan A D,Chen M W.Intermetallic, 1996; 4:489
6Lin D L,Shan A D,Chen M W.Acta Metall Sin(Engl Lett),1996;9:89
7刘震云,林栋梁,各月峰,单爱党,金属学报,1996;32:1139
8谷月峰,林栋梁,单爱党,刘毅,叶伟金属学报, 1996; 32:1135
9Liu Y,Li D Q、Lin D L.Scri Mater,1996;34:1105
10刘毅,郦定强,林栋梁金属学报,1996;32:225
11Whittenberger J D Mater Sci Eng,1986;77:103
12黄孝瑛透射电子显微学上海:上海科技出版社,1987: 246
13Whittenberger J D.Mater Sci Eng,1983:57:77T
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[9] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[10] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[11] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[12] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[13] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[14] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[15] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
No Suggested Reading articles found!