Please wait a minute...
Acta Metall Sin  1997, Vol. 33 Issue (11): 1121-1129    DOI:
Current Issue | Archive | Adv Search |
MOLECULAR DYNAMICS STUDY ON THE INFLUENCE OF SINGLE EDGE DISLOCATION ON MARTENSITIC TRANSFORMATIONS IN NiAl
SHA Xianwei;ZHANG Xiumu;LI Bin;LI Yiyi(Institute of Metal Research;The Chinese Academy of Sciences;Shenyang 110015)
Cite this article: 

SHA Xianwei;ZHANG Xiumu;LI Bin;LI Yiyi(Institute of Metal Research;The Chinese Academy of Sciences;Shenyang 110015). MOLECULAR DYNAMICS STUDY ON THE INFLUENCE OF SINGLE EDGE DISLOCATION ON MARTENSITIC TRANSFORMATIONS IN NiAl. Acta Metall Sin, 1997, 33(11): 1121-1129.

Download:  PDF(998KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Via embedded atom type potential, molecular dynamics simulation has been performed to study the influence of single edge dislocation on both thermally and stress induced martensitic transformations in a stoichiometric NiAl B2 alloy. If no external force is applied to the system, the strain field of single edge dislocation can not nucleate martensites. Edge dislocation can be inherited during the growth processes of thermally induced martensite, and can also migrate toward the surface with the help of the transformation. When a tensile force is applied, stress induced martensite with 3R structure can initially nucleate near the dislocation core. Butterfly martensite appeared first during the growth process, and then another martensitic variant nucleated in the middle of the dislocation.Edge dislocation can reduce the activation energy for stress induced martensitic nucleation, and it also plays a role of plastic accommodation in the transformation processes.
Key words:  martensitic transformation      edge dislocation      molecular dynamics simulation      embedded atom type potential      NiAl     
Received:  18 November 1997     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1997/V33/I11/1121

1MageeCL.MetallTrans,1971;2:2419
2OlsonGB,CohenM.MetallTrans,1976;7A:1897,1905,1915
3KajiwaraS.MetallTrans,1986;17A:1701
4SuezawaM,CookHE.ActaMetall,1980;28:423
5EasterlingKE,TholenAR.ActaMetall,1976;24:333
6YuZZ,ClappPC.MetallTrans,1989;20A:1617
7沙宪伟,张修睦,陈魁英,李依依.金属学报,1996;32:685
8SchryversD.PhilosMag,1993;A68:1017
9MartynovVY,EnamiK,KhandrosLG,NennoS,TkachenkoAV.PhysMetMetallogr,1983;55:136
10沙宪伟,张修睦,李依依.钢铁研究学报,1997;9(6):
11DawMS,BaskesMI.PhysRev,1984;B29:6443
12RoseJH,SmithJR,GuineaF,FerranteJ.PhvsRev,1984;B29:2963
13ChenSP,SrolovitzDJ,VoterAF.JMaterRes,1989;4:62
14沙宪伟,张修睦,陈魁英,李依依.金属学报,1996;32:1184
15HeermannDW.ComputerSimulationMethodsinTheoreticalPhysics.2nded,Berlin:Springer-Verlag,1990:147
16ClappPC.PhysStatusSolidi,1973;B57:561
17ShaoY.PhD Thesis,UniversityofConnecticut,1993
[1] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[2] LI Wei, JIA Xingqi, JIN Xuejun. Research Progress of Microstructure Control and Strengthening Mechanism of QPT Process Advanced Steel with High Strength and Toughness[J]. 金属学报, 2022, 58(4): 444-456.
[3] CHEN Wei, CHEN Hongcan, WANG Chenchong, XU Wei, LUO Qun, LI Qian, CHOU Kuochih. Effect of Dilatational Strain Energy of Fe-C-Ni System on Martensitic Transformation[J]. 金属学报, 2022, 58(2): 175-183.
[4] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[5] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
[6] LIU Ze, NING Hanwei, LIN Zhangqian, WANG Dongjun. Influence of Spark Plasma Sintering Parameters on the Microstructure and Room-Temperature Mechanical Properties of NiAl-28Cr-5.5Mo-0.5Zr Alloy[J]. 金属学报, 2021, 57(12): 1579-1587.
[7] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[8] XIAO Fei, CHEN Hong, JIN Xuejun. Research Progress in Elastocaloric Cooling Effect Basing on Shape Memory Alloy[J]. 金属学报, 2021, 57(1): 29-41.
[9] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[10] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[11] CHEN Lei , HAO Shuo , MEI Ruixue , JIA Wei , LI Wenquan , GUO Baofeng . Intrinsic Increment of Plasticity Induced by TRIP and Its Dependence on the Annealing Temperature in a Lean Duplex Stainless Steel[J]. 金属学报, 2019, 55(11): 1359-1366.
[12] Lishan CUI, Daqiang JIANG. Progress in High Performance Nanocomposites Based ona Strategy of Strain Matching[J]. 金属学报, 2019, 55(1): 45-58.
[13] Haifeng ZHANG, Haile YAN, Nan JIA, Jianfeng JIN, Xiang ZHAO. Exploring Plastic Deformation Mechanism of MultilayeredCu/Ti Composites by Using Molecular Dynamics Modeling[J]. 金属学报, 2018, 54(9): 1333-1342.
[14] Cheng WEI, Changbo KE, Haitao MA, Xinping ZHANG. A Modified Phase Field Model Based on Order Parameter Gradient and Simulation of Martensitic Transformation in Large Scale System[J]. 金属学报, 2018, 54(8): 1204-1214.
[15] Zhaozhao WEI, Xiao MA, Xinping ZHANG. Topological Modelling of the B2-B19' Martensite Transformation Crystallography in NiTi Alloy[J]. 金属学报, 2018, 54(10): 1461-1470.
No Suggested Reading articles found!