Please wait a minute...
Acta Metall Sin  1996, Vol. 32 Issue (4): 363-367    DOI:
Current Issue | Archive | Adv Search |
ON THE PARTICLE PUSHING DURING SOLIDIFICATION
HAN Qingyou; J. D. HUNT(University of Oxford; England) (Manuscript received 1995-09-20)
Cite this article: 

HAN Qingyou; J. D. HUNT(University of Oxford; England) (Manuscript received 1995-09-20). ON THE PARTICLE PUSHING DURING SOLIDIFICATION. Acta Metall Sin, 1996, 32(4): 363-367.

Download:  PDF(381KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Particle pushing is one of the basic problems involved during solid-liquid phase transformation. Classical theory suggested that particle pushing is governed by the surface energy interactions, but this theory could not used to explain particle pushing occurring during the production of some metal-matrix composites. the authors propose that particle pushing is a result of fluid flow that occurs at the front of the solid-liquid interface. Two mechanisms for particle pushing as a result of fluid flow are presented and the criteria for particle pushing are derived. Experiments, carried out to verify the mechanisms and the criteria,show good agreement with theoretical model.Correspondent HAN Qingyou,(Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, England)
Key words:  particle pushing      solidification      fluid flow     
Received:  18 April 1996     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1996/V32/I4/363

1KrishnanBP,ShettyHR,RohatgiPK.TransAmFoundSoc,1976,76:732LunnerSE.JpnIronSteelInst,1972;1:1213UhlmannDR,ChalmersB,JacksonKA.JApplPhys,1964,35:29864BollingCF.CisseJ.JCrystGrowth,1971;10:565OmenyiSN,NeumannAW,MartinWW.JApplPhys,1981;52:7966ChernovAA,TemkinDE,Mel'nikovaAM.SovietPhysCryst,1976;21,3697StefanescuDM,DhindawBK,KacarSA,MoitraA.MetallTrans,1988;19A,28478MortensenA,JinI.IntMaterRev,1992;37:1019PotschkeJ,RoggeV.Naturwissenschaften,1986;73:38110NeumannAW,OmenyiSN,VanOssCJ.PhysChem,1982;86:126711PotchkeJ,RoggeV.JCrystGrowth,1989;94:72612TemkinDE,ChernovAA,Mel'nikovaAM.SovietPhysCryst,1977;22:1313HanQ,HuntJD.ISIJInt,1995;35:69314HanQ,LindsayJP,HuntJD.CastMet,1994;6:23715HanQ,HuntJD.JCrystGrowth,1995;152:22116HanQ.PhDThesis,DepartmentofMaterials,UniversityofOxford,199417HanQ,HuntJD.JCrystGrowth,1994;140:39818HanQ,HuntJD.JCrystGrowth,1994;140:40619SaffmanPG.JFluidMech,1965;22:38520SaffmanPG.JFluidMech,1968;31:624^
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[4] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[5] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[6] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[7] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[8] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[9] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[10] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[11] WU Guohua, TONG Xin, JIANG Rui, DING Wenjiang. Grain Refinement of As-Cast Mg-RE Alloys: Research Progress and Future Prospect[J]. 金属学报, 2022, 58(4): 385-399.
[12] ZHANG Lei, SHI Tao, HUANG Huogen, ZHANG Pei, ZHANG Pengguo, WU Min, FA Tao. Phase Separation and Solidification Sequence of Uranium-Based Amorphous Composites[J]. 金属学报, 2022, 58(2): 225-230.
[13] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[14] CAO Jianghai, HOU Zibing, GUO Zhongao, GUO Dongwei, TANG Ping. Effect of Superheat on Integral Morphology Characteristics of Solidification Structure and Permeability in Bearing Steel Billet[J]. 金属学报, 2021, 57(5): 586-594.
[15] ZHANG Zhuang, LI Haiyang, ZHOU Lei, LIU Huasong, TANG Haiyan, ZHANG Jiaquan. As-Cast Spot Segregation of Gear Steel and Its Evolution in the Rolled Products[J]. 金属学报, 2021, 57(10): 1281-1290.
No Suggested Reading articles found!