Please wait a minute...
Acta Metall Sin  1995, Vol. 31 Issue (21): 406-412    DOI:
Current Issue | Archive | Adv Search |
HYDROGEN INDUCED CLEAVAGE FRATURE IN Ti_3Al AND ITS MECHANISM
ZHANG Yue; CHU Wuyang; YUAN Runzhang; WANG Yanbin; OUYANG Shixi. XIAO Jimei(State Key Laboratory for Synthesis and Processing of Advanced Matericals;Wuhan University of Technology); Wuhan 430070(University of Science and Technology Beijing); Beijing 100083(Manuscript received 1994-09-28; in revised form 1995-02-23)
Cite this article: 

ZHANG Yue; CHU Wuyang; YUAN Runzhang; WANG Yanbin; OUYANG Shixi. XIAO Jimei(State Key Laboratory for Synthesis and Processing of Advanced Matericals;Wuhan University of Technology); Wuhan 430070(University of Science and Technology Beijing); Beijing 100083(Manuscript received 1994-09-28; in revised form 1995-02-23). HYDROGEN INDUCED CLEAVAGE FRATURE IN Ti_3Al AND ITS MECHANISM. Acta Metall Sin, 1995, 31(21): 406-412.

Download:  PDF(552KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  For Ti-24Al-11Nb alloy,the hydrogen induced crack (HIC) propagation was facilitated through the crack cleavage on the slip planes during dynamic hydrogen charging under either constant or alternating loading at room temperature. The discontinuous HIC was preferentially nucleated in a2-platelets. The α2/βboundaries are effective barriers to HIC nucleation and propagation. Hydrogen induces cleavage fracture by promoting the emission of dislocation at the crack tip as well as the nucleation and propagation of microcracks in the DFZ.Correspondent:(ZHANG Yue, associate professor, State Key. Laboratory .for Synthesis and Processing of Advanced Materials, Wuhan University. of Technology, Wuhan 430070)
Key words:  Ti_3Al      intermetallic compound      hydrogen induced crack      mechanism     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1995/V31/I21/406

1FleischerRL,DimidukDM,LipsittHA,AnnRevMaterSci,1989;19:2312StoloffNS.HydrogenEffeclsonMaterialBehavior,TheMinerial,Metals,MaterialsSocietv19903ChuWY.ThompsonAW,WilliamJC.ActaMetallMater,1992:40:454ChuWY,ThompsonAW.MetallTrans,1991;22A:715ChuWY,ThompsonAW.MetallTrans,1991;23A:12996褚武扬,肖纪美,ThompsonAW.金属学报,1992;5A:2867ChuWY,ThompsonAW,In:DasSK,BallardCPeds.,HighPerformanceCompositesforthe1990.TMS,1438ManoreE,EliezerD.ScriptMetallMater,1989;23:13139ZhangYue,WangYi,WangYB,ChuWY,HsiaoJM.ScriptMetallMater,1993;29:97510ZhangYue,WangYB,ChuWY,HsiaoJM.ScriptMetallMater,1994;30:54111张跃,王燕斌,乔利杰,堵武扬,肖纪美.金属学报,1993;29A:39812LipsittHA,ShechtmanD,SchafrikRE.MetallTrans,1980;11A:13613MinonnishiY.PhilMag,1991;63A,108514张跃,诸武扬,王燕斌,肖纪美.中国科学,1994,24A:55115李振民,周敬,刘民治.材料科学进展,1989,3:331B
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[5] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[9] LI Qian, LIU Kai, ZHAO Tianliang. Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress[J]. 金属学报, 2023, 59(6): 829-840.
[10] CAO Shuting, ZHANG Shaohua, ZHANG Jian. Combustion Behavior of GH4061 Alloy in High Pressure and Oxygen-Enriched Atmosphere[J]. 金属学报, 2023, 59(4): 547-555.
[11] XIONG Tianying, WANG Jiqiang. Research Progress of Cold Spray in Institute of Metal Research, Chinese Academy of Sciences[J]. 金属学报, 2023, 59(4): 537-546.
[12] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[13] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[14] CHEN Jilin, FENG Guanghong, MA Honglei, YANG Dong, LIU Wei. Microstructure, Mechanical Properties, and Strengthening Mechanism of Cr-Mo Microalloy Cold Heading Steel[J]. 金属学报, 2022, 58(9): 1189-1198.
[15] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
No Suggested Reading articles found!