Please wait a minute...
Acta Metall Sin  1994, Vol. 30 Issue (21): 385-392    DOI:
Current Issue | Archive | Adv Search |
NUMERICAL SIMULATION OF ALLOY SOLIDIFICATION BY A TWO-PHASE MODEL
NI Jun; BECKERMANN Christoph(Department of Mechanical Engineering;TheUniversity of Iowa; USA)
Cite this article: 

NI Jun; BECKERMANN Christoph(Department of Mechanical Engineering;TheUniversity of Iowa; USA). NUMERICAL SIMULATION OF ALLOY SOLIDIFICATION BY A TWO-PHASE MODEL. Acta Metall Sin, 1994, 30(21): 385-392.

Download:  PDF(618KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A two-phase model of the transport phenomena during solidification of alloys is presented that describes The effect of solid transport and liquid convection on macro-segregation and grain structure evolution.The model considers nucleation, thermal and solutal undercooling, and the macro-movement of solid grains, thus combining macro-transport phenomena with the microstructure of the solid.The two-phase model was used in a numerical simulation of solidification of Al-4%Cu equiaxed alloy and representative results are presented.
Key words:  transport phenomenon      solidification      two-phase flow      numerical simulation      segregation      equiaxed crystal      Al-Cu alloy     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1994/V30/I21/385

1FlemingsMC,MehrabianR,NereoGE.TMS-AIME,1968:242:412FlemingsMC,NereoGE.TMS-AIME,1968;242:503FlemingsMC,NerecGE.TMS-AIME,1967;239:14494BennonWD,IncroperaFP.IntJHeatandMassTransfer,1987;30:21615ChiangKC,TsaiHL.IntJHeatandMassTransfer,1992;35:17636BeckermannC,ViskantaR.PhysicoChemicalHydraulics,1988;10:1957RappazM.IntMaterialsReviews,1989;34:938NiJ,BeckermannC.MetallTransB,1991;22B:3499NiJ,FellerRJ,BeckermannC.ModelingofCasting,WeldingandAdvancedSolidification,RappazM,OzguMR,MahinKW,1991:67510StefanescuDM,UpadhaG,BandyopadhyayD.MetallTrans,1986:21A:99711WangCY,BeckermannC.In:BeckermannC,BertramLA,PienSJ,SmelserRE,eds.Micro-MacroScalePhenomenainSolidification,NewYork:ASMEPublication,199212RowePN,ClaxtonKT.TransInstnChenEngrs,1965;43:T32113OhnakaI.IronSteelInstJapan,1986;26:104514BeckermannC,ViskantaR.ApplMechRey.1993;46:115PoirierDR.MetallTransB,1987;18B:24516AgarwalPH,O′NeillBK.ChemEngngSci,1988:43:248717LudarigJC,QinHQ,SpaldingDB.ThePhoenicsReferenceManual,CHAM,ImpireColleqe,UK.198818BattleTP,PehlkeRD.MetallTransB,1990;21B:35719HatchJ.PropertiesPhysicalMetallnrgyOhio:AmericanSocietyforMetalsPublication,MetalsPark.1984
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[4] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[5] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[6] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[7] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[8] ZHANG Limin, LI Ning, ZHU Longfei, YIN Pengfei, WANG Jianyuan, WU Hongjing. Macrosegregation Mechanism of Primary Silicon Phase in Cast Hypereutectic Al-Si Alloys Under Alternating Electropulsing[J]. 金属学报, 2023, 59(12): 1624-1632.
[9] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[10] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[11] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[12] DUAN Huichao, WANG Chunyang, YE Hengqiang, DU Kui. Electron Tomography Analysis on the Structure and Chemical Composition of Nanoporous Metal Surfaces[J]. 金属学报, 2023, 59(10): 1291-1298.
[13] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[14] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[15] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
No Suggested Reading articles found!