Please wait a minute...
Acta Metall Sin  1992, Vol. 28 Issue (9): 17-24    DOI:
Current Issue | Archive | Adv Search |
EFFECTS OF B~+ IMPLANTATION ON MECHANICAL PROPERTIES AND MICROSTRUCTURE OF POLYCRYSTALLINE Ni
CHEN Lifan; BA Tu; Sill Changxu (State key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; Academia Sinica; Shenyang)
Cite this article: 

CHEN Lifan; BA Tu; Sill Changxu (State key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; Academia Sinica; Shenyang). EFFECTS OF B~+ IMPLANTATION ON MECHANICAL PROPERTIES AND MICROSTRUCTURE OF POLYCRYSTALLINE Ni. Acta Metall Sin, 1992, 28(9): 17-24.

Download:  PDF(2585KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Polycrystalline Ni was implanted with 50 keV B~+ to a dose of 3×10~(17) ions/cm~2 at room temperature. The specimens with and without B~+ implantation were tested in micro-hardness and load or unload tensile fatigue under stress-controlled condition. The surface layer structure was observed with IMA, SEM and TEM before and after implantation and/or fatigue. The B~+ implanted surface region consists of amorphous Ni-B phase, Ni_3B and Ni_4B_3 second phases, and damage structure. The corresponding measurements indicate that both surface micro-hardness and endurance limit of the specimens have increased after implantation. Compared with unimplanted specimens under the same fatigue condition, all implanted specimens show the smallest overall fatigue damage. The cyclic loading at room temperature can lead to migration of implanted B~+ out of surface layer and recrysatallization of amorphous Ni-B phase. Possible strengthening mechanisms for these experimental results were discussed.
Key words:  ion implantation      fatigue      polycrystalline Ni      implanted layer     
Received:  18 September 1992     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1992/V28/I9/17

1 Picraux S T, Pope L E, Science, 1984; 226: 615
2 Hohmuth K, Richter E, Rauschenbach B, Blochwitz C. Mater Sci Ehg, 1985; 69:191
3 Herman H. Nucl Instrum Methods, 1981; 182/183: 887
4 Perry A J. Surf Eng, 1987; 3(2) : 154
5 Vardiman R G, Cox J E. Acta Metall, 1985; 33: 2033
6 Kujre A, Charkabortty S B, Starke E A Jr. Nucl Instrum Methods, 1981; 182/183:949
7 Xu M H, Patu S, Wang Z G. Phys Status Solidi, 1988; 105a; 419
8 McHargue C J. Int Met Rev, 1986; 31(2) : 49
9 Hirvonen J K, Clayton C R. In: Poate J M, Foti G, Jacobson D C eds., Surface Modification and Alloying by Laser, Ion and Electron Beams, New York: Plenum, 1983: 323
10 Grummon D S, Jones J W. Scr Metall, 1986; 20: 311
11 Han J G, Hochman R F. Mater Sci Eng, 1987: 90: 317
12 陈立凡.中国科学院金属研究所硕士学位论文.198
[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[5] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[6] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[7] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[8] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[9] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[10] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[11] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[12] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[13] YANG Qinzheng, YANG Xiaoguang, HUANG Weiqing, SHI Duoqi. Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. 金属学报, 2022, 58(5): 683-694.
[14] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[15] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
No Suggested Reading articles found!