Please wait a minute...
Acta Metall Sin  1992, Vol. 28 Issue (3): 21-26    DOI:
Current Issue | Archive | Adv Search |
CYCLIC DEFORMATION OF COARSE GRAINED POLYCRYSTALLINE PURE Al Ⅱ. FRACTURE SURFACE MORPHOLOGY
XIA Yuebo;WANG Zhongguang State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; Academia Sinica; Shenyang
Cite this article: 

XIA Yuebo;WANG Zhongguang State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; Academia Sinica; Shenyang. CYCLIC DEFORMATION OF COARSE GRAINED POLYCRYSTALLINE PURE Al Ⅱ. FRACTURE SURFACE MORPHOLOGY. Acta Metall Sin, 1992, 28(3): 21-26.

Download:  PDF(1498KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  SEM photos for very coarse grained and high ductile polycrystalline pure Alshow certain following characteristics: A few fracture sources are concentrated, the fan--shapedcrack propagated near them, and the fatigue striations are cycle cleavage facets. Each striationconsists of wide cleavage facet and narrow cleavage step. These steps often blunt due to plasticdeformation; The fatigue striations are clear and continual, and distribute to whole fracture sur-face in propagation zone of II stage. Two fatigue striations, formed in different level, areconjoined by a "twisted baked piece of pastry" band; The secondary crack along fatiguestriations were observed frequently. Some of them have already developed into secondarymacrocracks and secondary fatigue striations were found clearly on fracture surface of secon-dary crack; The whole fracture surface can be divided into two parts, crack initiation and crackpropagation zones, however, no statical--fracture zone was observed. The mechanism of fatiguestriation formation was preliminarily discussed.
Key words:  fatigue crack      pure Al      fatigue striation      secondary crack      cleavage tongue     
Received:  18 March 1992     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1992/V28/I3/21

1 曾祥华.中国科学院院刊,1986;1:121

2 夏月波,王中光,艾素华.金属学报,1982;18:606
3 Xia Y B, Wang Z G, Wang R H. Phys Status Solidi (a), 1990; 120: 125
4 夏月波,王中光.金属学报,1992;28(2) :A51
5 Gerberich W W, Jatavallabhula K. Acta Metall, 1983; 31: 241
6 Bucci R J, Paris P C, Herterzberg R W, Schmidt R A, Anderson A F. ASTM STP 513, 1972: 125
7 Hertzberg R W, Mills W J. ASTM STP 600, 1975: 220
8 Gell M, Leverant G R. Acta Metall, 1968; 16: 553
9 Feeney J A, McMillan J C, Wei R P. Metall Trans, 1970; 1: 429
10 Otsuka A, Mori K, Miyata T. Eng Fract Mech, 1975; 7: 429
11 Bechem C D, Meyn D A. ASTM STP 436, 1968: 59
12 Gell M, Leverant G R. Trans Am Inst Min Metall Pet Eng, 1968; 242: 1869
13 Phillips A, Kerlins V, Rawe R A, Whiteson B V. Electorn Fractography Handbook. Battelle, Metals and Ceramics Information Center, 19767
[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[3] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[4] YANG Qinzheng, YANG Xiaoguang, HUANG Weiqing, SHI Duoqi. Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. 金属学报, 2022, 58(5): 683-694.
[5] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[6] GUO Haohan, YANG Jie, LIU Fang, LU Rongsheng. Constraint Related Fatigue Crack Initiation Life of GH4169 Superalloy[J]. 金属学报, 2022, 58(12): 1633-1644.
[7] HOU Jiapeng, SUN Pengfei, WANG Qiang, ZHANG Zhenjun, ZHANG Zhefeng. Breaking the Trade-Off Relation Between Strength and Electrical Conductivity: Heterogeneous Grain Design[J]. 金属学报, 2022, 58(11): 1467-1477.
[8] ZHANG Xiaochen, MENG Weiying, ZOU Defang, ZHOU Peng, SHI Huaitao. Effect of Pre-Cyclic Stress on Fatigue Crack Propagation Behavior of Key Structural Al Alloy Materials Used in High Speed Trains[J]. 金属学报, 2019, 55(10): 1243-1250.
[9] Chao XU, Qiliang NAI, Zhihao YAO, He JIANG, Jianxin DONG. Grain Boundary Oxidation Effect of GH4738 Superalloy on Fatigue Crack Growth[J]. 金属学报, 2017, 53(11): 1453-1460.
[10] Qiliang NAI,Jianxin DONG,Maicang ZHANG,Zhihao YAO. INFLUENCE OF MULTI-MICROSTRUCTURE INTERACTION ON FATIGUE CRACK GROWTH RATE OF GH4738 ALLOY[J]. 金属学报, 2016, 52(2): 151-160.
[11] YAN Ying, LU Meng, LI Xiaowu. EFFECTS OF PRE-FATIGUE DEFORMATION ON THE  UNIAXIAL TENSILE BEHAVIOR OF COARSEGRAINED PURE Al[J]. 金属学报, 2013, 49(6): 658-666.
[12] YANG Jian, DONG Jianxin, ZHANG Maicang. HIGH TEMPERATURE FATIGUE CRACK GROWTH BEHAVIOR OF A NOVEL POWDER METALLURGY SUPERALLOY FGH98[J]. 金属学报, 2013, 49(1): 71-80.
[13] LI Wei CHEN Zhenhua CHEN Ding TENG Jie. GROWTH BEHAVIOR OF FATIGUE CRACK IN SPRAY-FORMED SiCp/Al-7Si COMPOSITE[J]. 金属学报, 2011, 47(1): 102-108.
[14] TANG Lian LU Lei. EFFECT OF TWIN LAMELLAR THICKNESS ON THE FATIGUE PROPERTIES OF NANO--TWINNED Cu[J]. 金属学报, 2009, 45(7): 808-814.
[15] ZHANG Zhefeng ZHANG Peng TIAN Yanzhong ZHANG Qingke QU Shen ZOU Hefei DUAN Qiqiang LI Shouxin WANG Zhongguang. INTERFACIAL EFFECTS OF FATIGUE CRACKING IN METALLIC MATERIALS[J]. 金属学报, 2009, 45(7): 788-800.
No Suggested Reading articles found!