Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (6): 658-666    DOI: 10.3724/SP.J.1037.2012.00684
Current Issue | Archive | Adv Search |
EFFECTS OF PRE-FATIGUE DEFORMATION ON THE  UNIAXIAL TENSILE BEHAVIOR OF COARSEGRAINED PURE Al
YAN Ying1), LU Meng1), LI Xiaowu1,2)
1) Institute of Materials Physics and Chemistry, College of Sciences, Northeastern University, Shenyang 110819
2) Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819
Cite this article: 

YAN Ying, LU Meng, LI Xiaowu. EFFECTS OF PRE-FATIGUE DEFORMATION ON THE  UNIAXIAL TENSILE BEHAVIOR OF COARSEGRAINED PURE Al. Acta Metall Sin, 2013, 49(6): 658-666.

Download:  PDF(5734KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The coarse-grained pure Al was first pre-fatigued to different fatigue life fractions D(D=2%-75 {%}) at a constant stress amplitude, and then the effect of pre-fatigue deformation on its uniaxial tensile behavior, fracture surface deformation features and dislocation structures were investigated. The results show that with increasing D, the extrusion/intrusion phenomenon on the surfaces of the pre-fatigued coarse-grained pure Al becomes more serious, and the non-uniform deformation in grain interiors is also enhanced, leading to the nucleation of micro-cracks and micro-voids along slip bands (SBs) or at grain boundaries (GBs) as well as their subsequent propagation. As D is as high as 75%, the longer intergranular cracks are produced at triple grain boundary nodes. With increasing D, the fatigue dislocation structures transform from loose cellular structures under annealing state into regular cellular structures and sub-grains, but the size of sub-grains nearly does not change. After the pre-fatigued coarse-grained pure Al specimens were subjected to the uniaxial tension, the yield strengthσYS obviously increases, but the change inσYS is not so obvious as D increases. Meanwhile, the ultimate tensile strengthσUTS first decreases and then increases, and finally sharply re-decreases. However, the pre-fatigued coarse-grained pure Al has poor ability to work hardening. The tensile fracture surface consists of fibrous and shear lip zones, and the number of dimples in fibrous zones increases and the size reduces with increasing D; as D reaches 50%, the number of dimples re-reduces and the size raises, and the fracture surface exhibits tearing characteristics. The sub-structures after the uniaxial tension are mainly composed of sub-grains and cellular dislocation structures inside sub-grains, and with increasing D, the size of sub-grains first reduces and then increases. The formation of fine sub-grains and cellular dislocation structures inside sub-grains results in the fact that the pre-fatigued coarse-grained pure Al has higher maximum uniform percent elongation.

Key words:  coarse-grained pure Al      pre-fatigue deformation      uniaxial tension      fracture surface      dislocation structure     
Received:  15 November 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00684     OR     https://www.ams.org.cn/EN/Y2013/V49/I6/658

[1] Torres M A S, Voorwald H J C.  Int J Fatigue, 2002; 24: 877

[2] Williams J J, Deng X, Chawla N.  Int J Fatigue, 2007; 29: 1978
[3] Al-Rubaie K S, Del Grande M A, Travessa D N, Cardoso K R.  Mater Sci Eng, 2007; A464: 141
[4] Niendorf T, Lotze C, Canadinc D, Frehn A, Maier H J.  Mater Sci Eng, 2009; A499: 518
[5] Mocilnik V, Gubeljak N, Predan J, Flasker J.  Eng Fract Mech, 2010; 77: 3132
[6] Valiev R Z, Langdon T G.  Prog  Mater Sci, 2006; 51: 881
[7] Estrin Y, Vinogradov A.  Int J Fatigue, 2010; 32: 898
 [8] Galan Lopez J, Verleysen P, De Baere I, Degrieck J.  Procedia Eng,2011; 10: 1961
[9] Froustey C, Lataillade J L.  Mater Sci Eng, 2009; A500: 155
[10] Sanchez-Santana U, Rubio-Gonzalez C, Mesmacque G, Amrouche A. Int J Fatigue, 2009; 31: 1928
[11] Sanchez-Santana U, Rubio-Gonz alez C, Mesmacque G, Amrouche A,Decoopman X.  Int J Fatigue, 2008; 30: 1708
[12] Sanchez-Santana U, Rubio-Gonzalez C, Mesmacque G, Amrouche A,Decoopman X.  Mater Sci Eng, 2008; A497: 51
[13] Ye D Y, Xu Y D, Xiao L, Cha H B.  Mater Sci Eng, 2010; A527: 4092
[14] Verleysen P, Vanduyslager P, Van Slycken J, Vermeulen M, Degrieck J.  J Phy IV,2006; 134: 1307
[15] Li X W, Wang X M, Guo W W, Qi C J, Yan Y.  Metall Mater Trans, 2013; 44A: 1631
[16] Xia Y B, Wang Z G.  Acta Metall Sin, 1992; 28: A51
 (夏月波, 王中光. 金属学报, 1992; 28: A51)
[17] Liu G D, Zhu Z G, Wang J.  Acta Metall Sin, 1996; 5: 510
 (刘国东, 朱振刚, 王静. 金属学报, 1996; 5: 510)
[18] Videm M, Ryum N.  Mater Sci Eng, 1996; A219: 1
[19] Giese A, Estrin Y.  Scr Metall, 1993; 28: 803
[20] Fujii T, Sawatari N, Onaka S, Kato M.  Mater Sci Eng, 2004; A387--389: 486
[21] Vorren O, Ryum N.  Acta Metall, 1987; 35: 855
[22] Videm M, Ryum N.  Mater Sci Eng, 1996; A219: 11
[23] Xia Y B, Wang Z G, Ai S H.  Acta Metall Sin, 1982; 18: 606
 (夏月波, 王中光, 艾素华. 金属学报, 1982: 18: 606)
[24] Wang H, Xu Y L, Sun Q Y, Xiao L, Sun J.  Acta Metall Sin, 2009; 45: 434
 (王航, 徐燕灵, 孙巧艳, 肖林, 孙军. 金属学报, 2009; 45: 434)
[25] Li C.  Metallography Theory. Harbin: Harbin Industry University Press, 1996: 274
 (李超. 金属学原理. 哈尔滨: 哈尔滨工业大学出版社, 1996: 274)
[1] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[2] Weiwei GUO,Chengjun QI,Xiaowu LI. INVESTIGATIONS ON THERMAL STABILITY OF FATIGUE DISLOCATION STRUCTURES IN CONJUGATE AND CRITICAL DOUBLE-SLIP-ORIENTED Cu SINGLE CRYSTALS[J]. 金属学报, 2016, 52(6): 761-768.
[3] Xiaoguang WANG,Jiarong LI,Jian YU,Shizhong LIU,Zhenxue SHI,Xiaodai YUE. TENSILE ANISOTROPY OF SINGLE CRYSTAL SUPERALLOY DD9[J]. 金属学报, 2015, 51(10): 1253-1260.
[4] FENG Rui, ZHANG Meihan, CHEN Nailu, ZUO Xunwei, RONG Yonghua. FINITE ELEMENT SIMULATION OF THE EFFECT OF STRESS RELAXATION ON STRAIN-INDUCED MARTENSITIC TRANSFORMATION[J]. 金属学报, 2014, 50(4): 498-506.
[5] GUO Weiwei, QI Chengjun, LI Xiaowu. INVESTIGATIONS ON THERMAL STABILITY OF FATIGUE DISLOCATION STRUCTURES IN A DOUBLE-SLIPORIENTED Cu SINGLE CRYSTAL[J]. 金属学报, 2013, 49(1): 107-114.
[6] LIU Dahai,YU Haiping, LI Chunfeng. PLASTIC INSTABILITY ANALYSIS OF 5052 ALUMINUM SHEETS IN MAGNETIC DYNAMIC TENSION PROCESS[J]. 金属学报, 2012, 48(5): 519-525.
[7] CHEN Chang WANG Mingpu WANG Shan JIA Yanlin ZUO Bo XIA Fuzhong. EVOLUTION OF DISLOCATION MICROSTRUCTURES IN Ta–7.5%W ALLOY FOILS DURING COLD–ROLLING[J]. 金属学报, 2011, 47(8): 984-989.
[8] LI Xiaowu CAO Xinming MA Chaoqun. FATIGUE DEFORMATION FEATURES OF Fe--Cr ALLOY SINGLE CRYSTALS CONTAINING Cr--RICH PRECIPITATES[J]. 金属学报, 2009, 45(7): 801-807.
[9] . Research Of Flaking And Its Fractography In A Wheel Steel[J]. 金属学报, 2006, 42(3): 273-279 .
[10] ZHANG Xiaoqing; SUN Yongqing; ZHANG Zheng. Recognition of Metal Fracture Surface Morphologies Based on the Fuzzy Texture Spectrum[J]. 金属学报, 2004, 40(10): 1018-1022 .
[11] XIAO Lin(State Key Laboratory for Mechanical Behaviour of Materials; Xi'an Jiaotong University; Xi'an 710049)KUANG Zhenbang(Department of Engineering Mechanics; Shanghai Jiaotong University; Shanghai 200030). MACROSCOPIC RESPONSE AND MICROSCOPIC MECHANISM OF ZIRCALOY-4 UNDER NONPROPORTIONAL LOADING[J]. 金属学报, 1998, 34(3): 242-248.
[12] WEI Xuejun;LI Jin;LIU Su'e;KE Wei (State Key Laboratory of Corrosion and Protection; Institute of Corrosion and Protection of Metals; The Chinese Academy of Sciences; Shenyang 110015). ANALXSIS OF FATIGUE FRACTURE WITH CYCLIC OVERLOADING FOR A537 STEEL IN 3.5%NaCl SOLUTION AT AN APPLIED CATHODIC POTENTIAL[J]. 金属学报, 1998, 34(2): 146-150.
[13] Gong Bo;Chen Daolun; Su Huihe; Wang Zhongguang(State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015). DIRECT OBSERVATION OF DISLOCATION STRUCTURE IN DEFORMED MATERIALS BY SEM──Dislocation Structure in a Fatigued [001] Cu Single Crystal[J]. 金属学报, 1997, 33(6): 561-565.
[14] YAN Yunhui; WANG Dejun;HUANG Yuhua; WANG Qinghao; WANG Tongbo (Northeastern University; Shenyang 110006)(Manuscript received 1996-05-20; in revised form 1996-07-04). FOURIER TRANSFORM METHOD FOR ANALYSIS OF FATIGUE FRACTOGRAPHS[J]. 金属学报, 1997, 33(4): 386-390.
[15] YAN Yunhui;WANG Dejun(Northeastern University; Shenyang 110006)(Manuscript received 1995-08-21). IMAGE PROCESSING TECHNIQUES IN ANALYSIS OF METAL FRACTURE SURFACE[J]. 金属学报, 1996, 32(5): 552-556.
No Suggested Reading articles found!