Please wait a minute...
Acta Metall Sin  1988, Vol. 24 Issue (4): 261-265    DOI:
Current Issue | Archive | Adv Search |
FATIGUE BEHAVIOUR OF GRANULAR BAINITE STRUCTURE
ZHOU Lubin;ZHANG Jie;KANG Mokuang Northwest Polytechnic University; Xi'anAssociate Professor; Department of Materials Science and Engineering; Northwest Polytechnic University; Xi' an
Cite this article: 

ZHOU Lubin;ZHANG Jie;KANG Mokuang Northwest Polytechnic University; Xi'anAssociate Professor; Department of Materials Science and Engineering; Northwest Polytechnic University; Xi' an. FATIGUE BEHAVIOUR OF GRANULAR BAINITE STRUCTURE. Acta Metall Sin, 1988, 24(4): 261-265.

Download:  PDF(1623KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The strain fatigue, impact fatigue and rotation beam fatigue behavi-our of granular bainitic structure has been studied. The results show that the strainfatigue properties and the impact fatigue properties of granular bainite are su-perior to that of tempered martensite under the condition that the ultimate tensilestrength is equal. The impact fatigue life increases with increasing amount of gra-nular bainite, because the M-A islands might retard the propagation of fatiguecrack. The rotation beam fatigue properties of granular bainite are similar to thatof tempered martensite. The relationship between fatigue limit S_f, yield strength σ_yand fracture strength S_k may be expressed as S_f=4.651+0.1411 (σ_y+S_k)
Key words:  granular bainite      tempered martensite      fatigue     
Received:  18 April 1988     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1988/V24/I4/261

1 Zhang X L, Hirt M A. Eng Fract Mech, 1983; 18: 965
2 Beerers C J. Met Sci, 1977; 11: 362
3 Orowan E. Proc Roy Soc, 1939; 171: 79
4 Dutta V B, Suresk S, Ritchie R O. Metall Trans, 1984; 15A: 1193
5 Fuchs H O. et al. Metal Fatigue in Engineering. New York: Wiley. 1980
6 Kramer I R. Metall Trans, 1974; 5: 1735
7 Smith R W, Hirschberg M H, Manson S S. NASA TN-D1574, 1963T
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[5] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[6] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[7] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[8] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[9] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[10] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[11] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[12] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[13] YANG Qinzheng, YANG Xiaoguang, HUANG Weiqing, SHI Duoqi. Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. 金属学报, 2022, 58(5): 683-694.
[14] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[15] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
No Suggested Reading articles found!