Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (5): 555-560    DOI: 10.3724/SP.J.1037.2014.00006
Current Issue | Archive | Adv Search |
SYNTHESIS OF LASER HIGH ENTROPY ALLOYING COATING ON THE SURFACE OF SINGLE-ELEMENT Fe BASE ALLOY
ZHANG Song(), WU Chenliang, WANG Chao, YI Junzhen, ZHANG Chunhua
Institute of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870
Cite this article: 

ZHANG Song, WU Chenliang, WANG Chao, YI Junzhen, ZHANG Chunhua. SYNTHESIS OF LASER HIGH ENTROPY ALLOYING COATING ON THE SURFACE OF SINGLE-ELEMENT Fe BASE ALLOY. Acta Metall Sin, 2014, 50(5): 555-560.

Download:  HTML  PDF(5169KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

FeCoCrAlCu laser high entropy alloying coating has been synthetized by high power semiconductor laser alloying of equimolar ratio of Co, Cr, Al, Cu four elements mixture powder on the surface of single-element Fe base alloy Q235 steel. The microstructure, constituent phases, composition distribution and mechanical properties of FeCoCrAlCu laser high entropy alloying coating were investigated by SEM, XRD, EDS and microhardness tester. Experimental results show that the principal element of Fe in the single-element base alloy Q235 substrate participates surface alloying process during the laser irradiation, forming FeCoCrAlCu five principal high entropy alloy coating. The alloying coating is composed of simple bcc solid solution and the microstructure is mainly composed of typical dendritic structure. Intermediate phase σ with tetragonal structure merely appears near the interface between laser alloying coating and substrate. From the surface of high entropy alloying coating to substrate, it presents the gradual distribution of the mixing entropy from high entropy, medium entropy to low entropy. the microhardness of FeCoCrAlCu laser high entropy alloying coating reaches 8.3 GPa, which is three times as much as that of the Q235 substrate.

Key words:  single-element base alloy      laser alloying      FeCoCrAlCu      high entropy alloy      coating     
Received:  06 January 2014     
ZTFLH:  TG146.4  
Fund: Supported by National Natural Science Foundation of China (No.51271126), Natural Science Foundation of Liaoning Province of China (No.2013020101) and Shenyang Science and Technology Funded Projects (Nos.F13-318-1-52 and F13-070-2-00)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2014.00006     OR     https://www.ams.org.cn/EN/Y2014/V50/I5/555

Fig.1  

CoCrAlCu/Q235激光高熵合金化层横截面SEM像

Fig.2  

CoCrAlCu/Q235激光高熵合金化层中部局部微观组织

Point Fe Co Cr Al Cu
A 8.76 6.51 5.70 13.75 65.28
B 33.27 21.25 20.89 13.44 11.15
Table 1  EDS results of the compositions of the interdendritic (point A) and dendritic (point B) regions of the alloying coating in Fig.2(atomic fraction / %)
Fig.3  

CoCrAlCu合金粉末的XRD谱

Fig.4  

CoCrAlCu激光快速成型块体合金的XRD谱

Fig.5  

CoCrAlCu/Q235激光高熵合金化层的XRD谱

Fig.6  

CoCrAlCu/Q235激光高熵合金化层截面硬度分布曲线

s / mm Fe Co Cr Al Cu
10 19.50 20.19 20.94 19.34 20.03
200 20.66 20.63 19.96 19.36 19.39
400 19.96 20.13 20.55 19.57 19.79
500 42.64 16.36 15.01 13.52 12.47
600 64.53 10.35 9.58 8.35 7.19
800 93.10 1.72 0.94 1.43 2.81
Table 2  EDS results of the compositions of laser high entropy alloying sample of CoCrAlCu/Q235 at the surface of different depths(atomic fraction / %)
[1] Wang W R, Wang W L, Wang S C, Tsai Y C, Lai C H, Yeh J W. Intermetallics, 2012; 26: 44
[2]  Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y. Adv Eng Mater, 2004; 6: 299
[3] Chuang M H, Tsai M H, Wang W R, Lin S U, Yeh J W. Acta Mater, 2011; 59: 6308
[4] Zhang Y. Metallic Glasses and High Entropy Alloys. Beijing: Science Press, 2010: 69
(张 勇. 非晶和高熵合金. 北京: 科学出版社, 2010: 69)
[5] Hsu C Y, Sheu T S, Yeh J W, Chen S K. Wear, 2010; 268: 653
[6] Yeh J W, Chen Y L, Lin S J, Chen S K. Mater Sci Forum, 2007; 560: 1
[7] Tang W Y, Chuang M H, Lin S J, Yeh J W. Metall Mater Trans, 2012; 43A: 2390
[8] Chen M, Liu Y, Li Y X, Chen X. Acta Metall Sin, 2007; 43: 1020
(陈 敏, 刘 源, 李言祥, 陈 祥. 金属学报, 2007; 43: 1020)
[9] Zhang H, Pan Y, He Y Z. Mater Des, 2011; 32: 1910
[10] Wen L H, Kou H C, Li J S, Chang H, Xue X Y, Zhou L. Intermetallics, 2009; 17: 266
[11] Zhang H, Pan Y, He Y Z. Acta Metall Sin, 2011; 47: 1075
(张 晖, 潘 冶, 何宜柱. 金属学报, 2011; 47: 1075)
[12] Huang C, Zhang Y Z, Vilar R, Shen J Y. Mater Des, 2012; 41: 338
[13] Zhang H, Pan Y, He Y Z, Jiao H S. Appl Surf Sci, 2011; 257: 2259
[14] Tsau C H. Intermetallics, 2001; 9: 1085
[15] Assadi H, Reutzel S, Herlach D M. Acta Mater, 2006; 54: 2793
[16] Zhang S, Zhang C H, Man H C, Wu W T, Wang M C. Trans Nonferrous Met Soc, 2001; 11: 838
[17] Zhang C H, Zhang S, Man H C, Liu C S, Cai Q K. Rare Met Mater Eng, 2005; 34: 701
(张春华, 张 松, 文效忠, 刘常升, 才庆魁. 稀有金属材料与工程, 2005; 34: 701)
[18] Zhang S, Zhang C H, Wu W T, Wang M C. Acta Metall Sin, 2001; 37: 315
(张 松, 张春华, 吴维, 王茂才. 金属学报, 2001; 37: 315)
[19] Qiu X W, Zhang Y P, He L, Liu C G. J Alloys Compd, 2013; 549: 195
[20] Swalin R A. Thermodynamics of Solid. 2nd ed., New York: Wiley, 1991: 21
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[3] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[4] FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. 金属学报, 2023, 59(5): 703-712.
[5] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[6] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[7] LI Dou, XU Changjiang, LI Xuguang, LI Shuangming, ZHONG Hong. Thermoelectric Properties of P-Type CeyFe3CoSb12 Thermoelectric Materials and Coatings Doped with La[J]. 金属学报, 2023, 59(2): 237-247.
[8] CONG Hongda, WANG Jinlong, WANG Cheng, NING Shen, GAO Ruoheng, DU Yao, CHEN Minghui, ZHU Shenglong, WANG Fuhui. A New Design Inorganic Silicate Composite Coating and Its Oxidation Behavior at High Temperature in Steam Atmosphere[J]. 金属学报, 2022, 58(8): 1083-1092.
[9] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[10] FENG Kai, GUO Yanbing, FENG Yulei, YAO Chengwu, ZHU Yanyan, ZHANG Qunli, LI Zhuguo. Microstructure Controlling and Properties of Laser Cladded High Strength and High Toughness Fe-Based Coatings[J]. 金属学报, 2022, 58(4): 513-528.
[11] WANG Haowei, ZHAO Dechao, WANG Mingliang. A Review of the Corrosion Protection Technology on In SituTiB2/Al Composites[J]. 金属学报, 2022, 58(4): 428-443.
[12] ZHANG Shihong, HU Kai, LIU Xia, YANG Yang. Corrosion-Erosion Mechanism and Research Prospect of Bare Materials and Protective Coatings for Power Generation Boiler[J]. 金属学报, 2022, 58(3): 272-294.
[13] REN Yuan, DONG Xinyuan, SUN Hao, LUO Xiaotao. Oxide Cleaning Effect of In-Flight CuNi Droplet During Atmospheric Plasma Spraying by B Addition[J]. 金属学报, 2022, 58(2): 206-214.
[14] LI Wenya, ZHANG Zhengmao, XU Yaxin, SONG Zhiguo, YIN Shuo. Research Progress of Cold Sprayed Ni and Ni-Based Composite Coatings: A Review[J]. 金属学报, 2022, 58(1): 1-16.
[15] CUI Hongzhi, JIANG Di. Research Progress of High-Entropy Alloy Coatings[J]. 金属学报, 2022, 58(1): 17-27.
No Suggested Reading articles found!