Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (7): 769-774    DOI: 10.3724/SP.J.1037.2013.00206
Current Issue | Archive | Adv Search |
THE ω PHASE IN A LOW ALLOY MARTENSITIC STEEL
PING Dehai1), YIN Jiang2), LIU Wenqing3), SU Yanjing4), RONG Lijian5), ZHAO Xinqing 6)
1) Department of Materials Science and Engineering, China University of Petroleum, Beijing 102249
2) Jiangsu Asian Star Anchor Chain Co. Ltd., Jingjiang
3) Key Laboratory for Microstructure,Shanghai University, Shanghai 200444
4) School of Materials Science and Engineering, University of Science and
Technology Beijing, Beijing 100083
5) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
6) School of Materials Science and Engineering, Beihang University, Beijing 100191
Cite this article: 

PING Dehai, YIN Jiang, LIU Wenqing, SU Yanjing, RONG Lijian, ZHAO Xinqing. THE ω PHASE IN A LOW ALLOY MARTENSITIC STEEL. Acta Metall Sin, 2013, 49(7): 769-774.

Download:  PDF(4567KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure of a low alloy martensitic steel has been investigated using TEM. It was indicated that the as-quenched plate and lath martensites consist of ferrite matrix and high density of nanometer-scaled ultrafine particles embedded in the matrix. These particles were designated to beω phase with a primitive hexagonal crystal structure. Theω particles exhibit an orientation relationship with the ferrite (α-Fe) matrix as follows: [113]α//[2113]ω,(110)α //(1101)ω and (211)α//(0110)ω, with lattice parameters of aω=21/2aα , cω=31/2/2aα. The results of the present study suggested that the carbon atoms in the steel are not homogenously distributed in the martensites. The ferrite matrix possesses very low content of carbon, and most of the carbon atoms are concentrated in the ω phase.

Key words:  Martensite      &omega      phase      C      microstructure      TEM     
Received:  23 April 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00206     OR     https://www.ams.org.cn/EN/Y2013/V49/I7/769

[1]Frost P D, Parris W M, Hirsch L L, Doig J R, Schwartz C M.Trans Am Soc Met , 1954; 46: 231
[2]Hatt B A, Roberts J A, Williams G I. Nature, 1957; 180: 1406
[3]Sikka S K, VohraY K, ChidambaramR. Prog Mater Sci,1982; 27: 245
[4]Al-Zain Y, Kim H Y, Koyano T, Hosoda H, Namc T H, MiyazakiS. Acta Mater, 2011; 59: 1464
[5]Cui C Y, Ping D H. J Alloys Compd, 2009; 471: 248
[6]Lutjering G, Williams J C. Titanium. 2nd Ed.,Berlin: Springer-Verlag, 2007: 15
[7]Hatt B A, Roberts J A. Acta Metall, 1960; 8: 575
[8]Shao G, Tsakiropoulos P. Acta Mater, 2000; 48:3671
[9]Yedneral A F, Perkas M D. Phys Met Metall, 1972;33: 89
[10]Burakovsky L, Chen S P, Preston D L, Belonoshko A B,Mikhaylushkin A S, Simak S I, Moriarty J A. Phys Rev Lett, 2010; 104: 255702
[11]Cheng G M, Yuan H, Jian W W, Xu W Z, Millett P C, Zhu Y T.Scr Mater, 2013; 68: 130
[12]Baker H. Alloy Phase Diagrams. ASM Handbook, Vol.3, Washington D.C.: ASM International, 1992: 527
[13]Lee H Y, Yen H W, Chang H T, Yang J R. Scr Mater,2010; 62: 670
[14]Leslie W C, Hornbogen E. In: Cahn R W, Haasen P eds., Physical Metallurgy. 4th Ed, Amsterdam: Elsevier Science B V,1996: 1555
[15]Bhadeshia H K D H, Honeycombe S R. Steel Microstructure and Properties. 3rd Ed, Amsterdam: Elsevier, 2006: 1

[16]Lerchbacher C, Zinner S, Leitner H. Micron, 2012; 43: 818
[17]Ping D H, Geng W T. Mater Chem Phys, 2013; 139:830
[18]Nuttall K, Faulkner D. J Nucl Mater, 1977; 67:131
[19]Banerjee S, Mukhopadhyay P. Phase Transformations:Examples from Ti and Zr Alloys. Amsterdam: Elsevier, 2007: 473
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[4] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[5] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[6] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[7] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[8] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[9] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[10] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[11] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[12] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[13] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[14] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[15] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
No Suggested Reading articles found!