Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (7): 769-774    DOI: 10.3724/SP.J.1037.2013.00206
Current Issue | Archive | Adv Search |
THE ω PHASE IN A LOW ALLOY MARTENSITIC STEEL
PING Dehai1), YIN Jiang2), LIU Wenqing3), SU Yanjing4), RONG Lijian5), ZHAO Xinqing 6)
1) Department of Materials Science and Engineering, China University of Petroleum, Beijing 102249
2) Jiangsu Asian Star Anchor Chain Co. Ltd., Jingjiang
3) Key Laboratory for Microstructure,Shanghai University, Shanghai 200444
4) School of Materials Science and Engineering, University of Science and
Technology Beijing, Beijing 100083
5) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
6) School of Materials Science and Engineering, Beihang University, Beijing 100191
Download:  PDF(4567KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure of a low alloy martensitic steel has been investigated using TEM. It was indicated that the as-quenched plate and lath martensites consist of ferrite matrix and high density of nanometer-scaled ultrafine particles embedded in the matrix. These particles were designated to beω phase with a primitive hexagonal crystal structure. Theω particles exhibit an orientation relationship with the ferrite (α-Fe) matrix as follows: [113]α//[2113]ω,(110)α //(1101)ω and (211)α//(0110)ω, with lattice parameters of aω=21/2aα , cω=31/2/2aα. The results of the present study suggested that the carbon atoms in the steel are not homogenously distributed in the martensites. The ferrite matrix possesses very low content of carbon, and most of the carbon atoms are concentrated in the ω phase.

Key words:  Martensite      &omega      phase      C      microstructure      TEM     
Received:  23 April 2013     

Cite this article: 

PING Dehai, YIN Jiang, LIU Wenqing, SU Yanjing, RONG Lijian, ZHAO Xinqing. THE ω PHASE IN A LOW ALLOY MARTENSITIC STEEL. Acta Metall Sin, 2013, 49(7): 769-774.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00206     OR     https://www.ams.org.cn/EN/Y2013/V49/I7/769

[1]Frost P D, Parris W M, Hirsch L L, Doig J R, Schwartz C M.Trans Am Soc Met , 1954; 46: 231
[2]Hatt B A, Roberts J A, Williams G I. Nature, 1957; 180: 1406
[3]Sikka S K, VohraY K, ChidambaramR. Prog Mater Sci,1982; 27: 245
[4]Al-Zain Y, Kim H Y, Koyano T, Hosoda H, Namc T H, MiyazakiS. Acta Mater, 2011; 59: 1464
[5]Cui C Y, Ping D H. J Alloys Compd, 2009; 471: 248
[6]Lutjering G, Williams J C. Titanium. 2nd Ed.,Berlin: Springer-Verlag, 2007: 15
[7]Hatt B A, Roberts J A. Acta Metall, 1960; 8: 575
[8]Shao G, Tsakiropoulos P. Acta Mater, 2000; 48:3671
[9]Yedneral A F, Perkas M D. Phys Met Metall, 1972;33: 89
[10]Burakovsky L, Chen S P, Preston D L, Belonoshko A B,Mikhaylushkin A S, Simak S I, Moriarty J A. Phys Rev Lett, 2010; 104: 255702
[11]Cheng G M, Yuan H, Jian W W, Xu W Z, Millett P C, Zhu Y T.Scr Mater, 2013; 68: 130
[12]Baker H. Alloy Phase Diagrams. ASM Handbook, Vol.3, Washington D.C.: ASM International, 1992: 527
[13]Lee H Y, Yen H W, Chang H T, Yang J R. Scr Mater,2010; 62: 670
[14]Leslie W C, Hornbogen E. In: Cahn R W, Haasen P eds., Physical Metallurgy. 4th Ed, Amsterdam: Elsevier Science B V,1996: 1555
[15]Bhadeshia H K D H, Honeycombe S R. Steel Microstructure and Properties. 3rd Ed, Amsterdam: Elsevier, 2006: 1

[16]Lerchbacher C, Zinner S, Leitner H. Micron, 2012; 43: 818
[17]Ping D H, Geng W T. Mater Chem Phys, 2013; 139:830
[18]Nuttall K, Faulkner D. J Nucl Mater, 1977; 67:131
[19]Banerjee S, Mukhopadhyay P. Phase Transformations:Examples from Ti and Zr Alloys. Amsterdam: Elsevier, 2007: 473
[1] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[2] HUANG Huogen, ZHANG Pengguo, ZHANG Pei, WANG Qinguo. Comparison of Glass Forming Ability Between U-Co and U-Fe Base Systems[J]. 金属学报, 2020, 56(6): 849-854.
[3] LIU Jinlai, YE Lihua, ZHOU Yizhou, LI Jinguo, SUN Xiaofeng. Anisotropy of Elasticity of a Ni Base Single Crystal Superalloy[J]. 金属学报, 2020, 56(6): 855-862.
[4] YANG Jie, WANG Lei. Effect and Optimal Design of the Material Constraint in the DMWJ of Nuclear Power Plants[J]. 金属学报, 2020, 56(6): 840-848.
[5] WEI Jie, WEI Yinghua, LI Jing, ZHAO Hongtao, LV Chenxi, DONG Junhua, KE Wei, HE Xiaoyan. Corrosion Behavior of Damaged Epoxy Coated Steel Bars Under the Coupling Effect of Chloride Ion and Carbonization[J]. 金属学报, 2020, 56(6): 885-897.
[6] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[7] LI Shiju, LI Yang, CHEN Jianqiang, LI Zhonghao, XU Guangming, LI Yong, WANG Zhaodong, WANG Guodong. Segregation Behavior, Microstructure and Properties of 2099Al-Li Alloy Produced by Twin-Roll Casting Underthe Action of Electromagnetic Oscillation Field[J]. 金属学报, 2020, 56(6): 831-839.
[8] GAO Xiang, ZHANG Guikai, XIANG Xin, LUO Lizhu, WANG Xiaolin. Effects of Alloying Elements on the Adsorption of Oxygen on V(110) Surfaces: A First-Principles Study[J]. 金属学报, 2020, 56(6): 919-928.
[9] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[10] CAO Fengting, WEI Jie, DONG Junhua, KE Wei, WANG Tiegang, FAN Qixiang. Corrosion Inhibition Behavior of 1-Hydroxyethylidene-1, 1-Diphosphonic Acid on 20SiMn Steel in Simulated Concrete Pore Solution Containing Cl-[J]. 金属学报, 2020, 56(6): 898-908.
[11] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[12] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[13] LI Gen, LAN Peng, ZHANG Jiaquan. Solidification Structure Refinement in TWIP Steel by Ce Inoculation[J]. 金属学报, 2020, 56(5): 704-714.
[14] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[15] CAO Tieshan, ZHAO Jinyi, CHENG Congqian, MENG Xianming, ZHAO Jie. Effect of Cold Deformation and Solid Solution Temperature on σ-phase Precipitation Behavior in HR3C Heat Resistant Steel[J]. 金属学报, 2020, 56(5): 673-682.
No Suggested Reading articles found!