Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (7): 775-782    DOI: 10.3724/SP.J.1037.2012.00769
Current Issue | Archive | Adv Search |
EFFECT OF LOADING MODES ON  MECHANICAL PROPERTY AND STRAIN INDUCED MARTENSITE  TRANSFORMATION OF AUSTENITIC STAINLESS STEELS
XU Yong1, ZHANG Shihong1, CHENG Ming1, SONG Hongwu1,WANG Sucheng2
1)Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2)Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

XU Yong, ZHANG Shihong, CHENG Ming, SONG Hongwu,WANG Sucheng. EFFECT OF LOADING MODES ON  MECHANICAL PROPERTY AND STRAIN INDUCED MARTENSITE  TRANSFORMATION OF AUSTENITIC STAINLESS STEELS. Acta Metall Sin, 2013, 49(7): 775-782.

Download:  PDF(1746KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Driven by a good combination of strength and ductility, austenitic stainless steels have attracted much interest in the past decade. These metastable alloys fall into the category of transformation induced plasticity (TRIP) steels in which high strength and excellent ductility can be achieved due to their strain--induced martensitic transformation at ambient temperature. However, there are few reports on the detail of promoting this phase transformation and enhancing the TRIP effect during deformation only by changing the loading mode. In present work, the effect of loading modes on mechanical property and microstructure of austenitic stainless steels was investigated under various temperatures. The tensile tests results reveal that cyclic tensile loading and unloading (CTLU) mode can strongly influence the deformation behavior of AISI 304 steel. There is no difference at high temperature tension by different loading modes. Compared with the conventional monotonic tensile loading (MTL) mode, the elongation has been slightly reduced by CTLU mode at cryogenic temperature. However, CTLU mode can improve both strength and ductility of AISI 304 steel at room temperature. An in situ Xray diffraction has been carried out to identify and evaluate strain-induced martensitic transformation by different loading modes at room temperature. Experimental results showed that the fraction of strain-induced martensite increases when unloading happens. It indicated that CTLU mode can enhance strain hardening in AISI 304 stainless steel, which prolongs the time to neck formation to a significant extent. Consequently the TRIP effect is enhanced.

Key words:  austenitic stainless steel      loading mode      cyclic tensile loading and unloading      strain-induced martensite      transformation induced plasticity effect     
Received:  24 December 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00769     OR     https://www.ams.org.cn/EN/Y2013/V49/I7/775

[1]Hecker S S, Stout M G, Staudhammer K P, Smith J L.Metall Trans, 1982; 13A: 619
[2]Rocha M R, Oliveira C A.  Mater Sci Eng, 2009; A517:281
[3]Bayerlein M, Christ H J, Mughrabi H.Mater Sci Eng,1989; A114: L11
[4]Nagy E, Mertinger V, Tranta F, Solyom J.Mater Sci Eng, 2004; A378: 308
[5]Yang Z Y, Su J, Chen J Y, Xiong J X.  Iron Steel,2007; 42(5): 61
(杨卓越, 苏杰, 陈嘉砚, 熊建新. 钢铁, 2007; 42(5): 61)
[6]Lebedev A A, Kosarchuk V V.  Int J Plast, 2000; 16:749
[7]Park W S, Yoo S W, Kim M H, Lee J M.  Mater Des,2010; 31: 3630
[8]Xu Y, Zhang S H, Song H W, Cheng M, Zhang H Q.Mater Lett, 2011; 65: 1545
[9]Xu Y, Zhang S H, Cheng M, Song H W.  Scr Mater,2012; 67: 771
[10]Cullen G W, Korkolis Y P.  Int J Solids Struct,2013; 50: 1621
[11]Cullen G W, Korkolis Y P.  AIP Conf Proc, 2013;1532: 725
[12]Hong S G, Lee S B.  Int J Fatigue, 2004; 26: 899
[13]Lee S H, Lee J C, Choi J Y, Nam W J.Met Mater Int, 2010; 16: 21
[14]Huang G L, Matlock D K, Krauss G.  Metall Trans,1989; 20A: 1239
[15]Breedis J F.  Acta Metall, 1965; 13: 239
[16]Spencer K, Veron M, Zhang K Y, Embury J D.Mater Sci Technol, 2009; 25: 7
[17]Zhang X H, Qiu X G, Lu G Q, Tang J.  Iron Steel Vanadium Titanium, 2001; 22(1): 63
(张晓华, 邱晓刚, 卢国清, 唐静. 钢铁钒钛, 2001; 22(1): 63)
[18]Song Y Q, Guan Z P, Li Z G, Wang M H.  Sci China SerE-Technol Sci, 2007; 37: 1363
(宋玉泉, 管志平, 李志刚, 王明辉. 中国科学E辑: 技术科学, 2007;37: 1363)
[19]Hedworth J, Stowell M J.  J Mater Sci, 1971; 6:1061
[20]Gibbs G B.  Philos Mag Lett, 1966; 13: 317
[21]Song Y Q, Lian S J, Zhang Z J.  Chin J Mech Eng,1989; 25(3): 38
(宋玉泉, 连书君, 张振军. 机械工程学报, 1989; 25(3): 38)
[22]Wang G C, Cao C X, Dong H B, Li Z X, Yang G, Zhao X B. Acta Aeronaut Astronaut Sin, 2009; 30: 357
(王高潮, 曹春晓, 董洪波, 李臻熙, 杨刚, 赵晓宾. 航空学报,2009; 30: 357)
[23]Zhang W F, Chen Y M, Zhu J H.  Chin J Nonferrous Met, 2000; 10: 236
(张旺峰, 陈瑜眉, 朱金华. 中国有色金属学报, 2000; 10: 236)
[24]Yu H Y.  Mater Sci Eng, 2008; A79: 333
[25]Zhou X F, Fu R Y, Su Y, Li L.  Iron Steel, 2009;44(3): 71
(周小芬, 符仁钰, 苏钰, 李麟. 钢铁, 2009; 44(3): 71)
[26]Fang X F, Dahl W.
 Mater Sci Eng, 1991; A141: 189

[1] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[2] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[3] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[4] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[5] CAO Chao, JIANG Chengyang, LU Jintao, CHEN Minghui, GENG Shujiang, WANG Fuhui. Corrosion Behavior of Austenitic Stainless Steel with Different Cr Contents in 700oC Coal Ash/High Sulfur Flue-Gas Environment[J]. 金属学报, 2022, 58(1): 67-74.
[6] PAN Qingsong, CUI Fang, TAO Nairong, LU Lei. Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. 金属学报, 2022, 58(1): 45-53.
[7] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[8] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[9] ZHANG Le,WANG Wei,M. Babar Shahzad,SHAN Yiyin,YANG Ke. Fabrication and Properties of Novel Multi-LayeredMetal Composites[J]. 金属学报, 2020, 56(3): 351-360.
[10] Jian PENG,Yi GAO,Qiao DAI,Ying WANG,Kaishang LI. Fatigue and Cycle Plastic Behavior of 316L Austenitic Stainless Steel Under Asymmetric Load[J]. 金属学报, 2019, 55(6): 773-782.
[11] Fengming QIN, Yajie LI, Xiaodong ZHAO, Wenwu HE, Huiqin CHEN. Effect of Nitrogen Content on Precipitation Behavior and Mechanical Properties of Mn18Cr18NAustenitic Stainless Steel[J]. 金属学报, 2018, 54(1): 55-64.
[12] Sihan CHEN,Tian LIANG,Long ZHANG,Yingche MA,Zhengjun LIU,Kui LIU. Study on Evolution Mechanism of bcc Phase During Solution Treatment in 6%Si High Silicon Austenitic Stainless Steel[J]. 金属学报, 2017, 53(4): 397-405.
[13] Jintao SHI,Longgang HOU,Jinrong ZUO,Lin LU,Hua CUI,Jishan ZHANG. QUANTITATIVE ANALYSIS OF THE MARTENSITE TRANSFORMATION AND MICROSTRUCTURE CHARACTERIZATION DURING CRYOGENIC ROLLING OF A 304 AUSTENITIC STAINLESS STEEL[J]. 金属学报, 2016, 52(8): 945-955.
[14] Dongsong RONG,Yong JIANG,Jianming GONG. EXPERIMENTAL RESEARCH AND THERMODYNAMIC SIMULATION OF LOW TEMPERATURE COLOSSAL CARBURIZATION OF AUSTENITIC STAINLESS STEEL[J]. 金属学报, 2015, 51(12): 1516-1522.
[15] Yawei PENG,Jianming GONG,Dongsong RONG,Yong JIANG,Minghui FU,Guo YU. NUMERICAL ANALYSIS OF LOW-TEMPERATURE SURFACE CARBURIZATION FOR 316L AUSTENITIC STAINLESS STEEL[J]. 金属学报, 2015, 51(12): 1500-1506.
No Suggested Reading articles found!