Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (7): 822-830    DOI:
Current Issue | Archive | Adv Search |
PHASE AND MICROSTRUCTURE SELECTION IN DIRECTIONALLY  SOLIDIFIED  PERITECTIC  ALLOYS UNDER CONVECTION CONDITION
WANG Lingshui, SHEN Jun, SHANG Zhao, WANG Lei, FU Hengzhi
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
Cite this article: 

WANG Lingshui, SHEN Jun, SHANG Zhao, WANG Lei, FU Hengzhi. PHASE AND MICROSTRUCTURE SELECTION IN DIRECTIONALLY  SOLIDIFIED  PERITECTIC  ALLOYS UNDER CONVECTION CONDITION. Acta Metall Sin, 2013, 49(7): 822-830.

Download:  PDF(1971KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

For the phase and microstructure selection during directional solidification of peritectic alloys, the solute distribution ahead of the solid-liquid interface plays a fundamental role. To study the solute distribution under convection condition, the convection factor (Δ) was introduced into the boundary layer model and Bower-Brody-Flemings model and the solute distribution ahead of the planar and cellular interfaces under convection condition during directional solidification were obtained. Based on these solute distributions, the nucleation and constitutional undercooling criterion and the assumption that the maximum interface growth temperature of phase growth is more stability during directional solidification, the nucleation conditions of new phase ahead of the growth interface under convection condition were analyzed and the phase and microstructure selection map in directionally solidified peritectic alloys under convection condition was developed. Compared with the Hunziker's model that is suit for the phase and microstructure selection of peritectic alloys under diffusive condition and the Karma's model that is used to explain the banded structure formation under convection condition, this model can return to the Hunziker's model under diffusive condition and include the Karma's model. Additionally, this model can predict the mixed banded structure and the coupled growth between the cellular primary phase and planar peritectic phase that can form under convection condition, which these models cannot display. In order to estimate the validity of this model, directional solidification experiments of Sn-1.6%Cd (mass fraction) peritectic alloy were carried out under different convection conditions. The results show that the experimental results are in agreement with the calculated results.That is, this model can explain the complex directional solidification microstructures of peritectic alloys appropriately.

Key words:  peritectic alloy      directional solidification      phase and microstructure selection      convection     
Received:  01 February 2013     

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2013/V49/I7/822

[1] Kerr H W, Kurz W.  Int Mater Rev, 1996; 41: 129

[2] Asta M, Beckermann C, Karma A, Kurz W, Napolitano R, Plapp M, Purdy G,Rappaz M, Trivedi R.  Acta Mater, 2009; 57: 941
[3] Boettinger W J, Coriell S R, Greer A L, Karma A, Kurz W, Rappaz M,Trivedi R.  Acta Mater, 2000; 48: 43
[4] Boettinger W J.  Metall Mater Trans, 1974; 5B: 2023
[5] Park J S, Trivedi R.  J Cryst Growth, 1998; 187: 511
[6] Liu D M, Li X Z, Su Y Q, Luo L S, Zhang B, Guo J J, Fu H Z.  Mater Lett, 2011; 65: 1628
[7] Luo L S, Su Y Q, Guo J J, Li X Z, Fu H Z.  Sci China, 2007; 50G: 442
[8] Lo T S, Dobler S, Plapp M, Karma A, Kurz W.  Acta Mater, 2003; 51: 599
[9] Trivedi R.  Metall Mater Trans, 1995; 26A: 1583
[10] Hunziker O, Vandyoussefi M, Kurz W.  Acta Mater, 1998; 46: 6325
[11] Li S M, Liu L, Li X L, Fu H Z.  Acta Metall Sin, 2004; 40: 20
(李双明, 刘林, 李晓历, 傅恒志. 金属学报, 2004; 40: 20)
[12] Li X Z, Guo J J, Su Y Q, Wu S P, Fu H Z.  Acta Metall Sin, 2005; 41: 593
(李新中, 郭景杰, 苏彦庆, 吴士平, 傅恒志. 金属学报, 2005; 41: 593)
[13] Guo J J, Li X Z, Su Y Q, Wu S P, Fu H Z.   Acta Metall Sin, 2005; 41: 599
(郭景杰, 李新中, 苏彦庆, 吴士平, 傅恒志. 金属学报, 2005; 41: 599)
[14] Karma A, Rappel W J, Fuh B C, Trivedi R.  Metall Mater Trans, 1998; 29A: 1457
[15] Mazumder P, Trivedi R.  Phys Rev Lett, 2002; 88: 235507
[16] Luo L S, Zhang Y M, Su Y Q, Wang X, Guo J J, Fu H Z.  Acta Metall Sin, 2011; 47: 275
(骆良顺, 张宇民, 苏彦庆, 王新, 郭景杰, 傅恒志. 金属学报, 2011; 47: 275)
[17] Luo L S, Fu H Z, Zhang Y M, Li X Z, Su Y Q, Guo J J.  Acta Metall Sin, 2011; 47: 284
(骆良顺, 傅恒志, 张宇民, 李新中, 苏彦庆, 郭景杰. 金属学报, 2011; 47: 284)
[18] Nernst W.  Z Phys Chem, 1904; 47: 52
[19] Burton J A, Prim R C, Schlichter W P.  J Chem Phys, 1953; 21: 1987
[20] Bower T F, Brody H D, Flemings M C.  Trans Metall Soc AIME, 1966; 236: 624
[21] Wang L, Shen J, Qin L, Feng Z, Wang L, Fu H.  J Cryst Growth, 2012; 356: 26
[22] Yasuda H, Notake N, Tokieda K, Ohnaka I.  J Cryst Growth, 2000; 210: 637
[23] Dutkiewicz J, Zabdyr L, Moser Z, Salawa J.  J Phase Equil, 1989; 10: 223
[24] Ma D, Li Y, Ng S C.  J Cryst Growth, 2000; 219: 300
[25] Trivedi R, Park J S.  J Cryst Growth, 2002; 235: 572
[26] Liu S, Trivedi R.  Metall Mater Trans, 2006; 37A: 3293
[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[4] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[5] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[6] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[7] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[8] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[9] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[10] Yan YANG, Guangyu YANG, Shifeng LUO, Lei XIAO, Wanqi JIE. Microstructures and Growth Orientation of Directionally Solidification Mg-14.61Gd Alloy[J]. 金属学报, 2019, 55(2): 202-212.
[11] JIN Hao, JIA Qing, LIU Ronghua, XIAN Quangang, CUI Yuyou, XU Dongsheng, YANG Rui. Seed Preparation and Orientation Control of PST Crystals of Ti-47Al Alloy[J]. 金属学报, 2019, 55(12): 1519-1526.
[12] Lin LIU, Dejian SUN, Taiwen HUANG, Yanbin ZHANG, Yafeng LI, Jun ZHANG, Hengzhi FU. Directional Solidification Under High Thermal Gradient and Its Application in Superalloys Processing[J]. 金属学报, 2018, 54(5): 615-626.
[13] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[14] Jincheng WANG, Chunwen GUO, Junjie LI, Zhijun WANG. Recent Progresses in Competitive Grain Growth During Directional Solidification[J]. 金属学报, 2018, 54(5): 657-668.
[15] Guang CHEN, Gong ZHENG, Zhixiang QI, Jinpeng ZHANG, Pei LI, Jialin CHENG, Zhongwu ZHANG. Research Progress on Controlled Solidificationand Its Applications[J]. 金属学报, 2018, 54(5): 669-681.
No Suggested Reading articles found!