Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (3): 330-340    DOI: 10.3724/SP.J.1037.2012.00603
Current Issue | Archive | Adv Search |
INFLUENCE OF Re ON THE PHASE CONSTITUENT OF A NiCoCrAlY COATING ALLOY
LIANG Jingjing 1, ZHU Ming 2, YUAN Zhonghua 2, WANG Junwu2, JIN Tao1,SUN Xiaofeng1, HU Zhuangqi1
1) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) Aviation Industry Corporation of China (AVIC) Guiyang Aero-engine (group) Corporation LTD., Anshun 561114
Cite this article: 

LIANG Jingjing, ZHU Ming, YUAN Zhonghua, WANG Junwu, JIN Tao,SUN Xiaofeng, HU Zhuangqi. INFLUENCE OF Re ON THE PHASE CONSTITUENT OF A NiCoCrAlY COATING ALLOY. Acta Metall Sin, 2013, 49(3): 330-340.

Download:  PDF(1463KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

MCrAlY alloy has served as overlay coatings or bond coats in thermal barrier coating systems ingas turbine engines, and its phase constituents play a vital role in determining the performance of these coatingsystems. In order to further understand the influence of Re on the phase constituents of MCrAlY coatings, the phase evolution of a Ni-20Cr-10Al-20Co coating alloy with 0-9% (mass fraction) Re addition was predicted the Thermo-Calc thermodynamic software and TTNi7 Ni-based superalloy database. Based on the calculation results,the four NiCoCrAlY alloys with different levels of Re (0, 3%, 6% and 9%) were prepared, and their phase constituents were experimentally investigated in the temperature range of 800-1250℃. Both the calculation result and the experimental microstructural observation indicated that the addition of Re slightly increased the fraction of β-NiAl phase, but dramatically enhanced the amounts of σ and α-Cr phases. Based on the combined analysis of microstructural observation and EPMA composition identification, it was proposed that the increased amounts of σ and α-Cr phases should result from the changed partition of Cr in all phases caused by Re addition. The σ phase is a low temperature stable phase, and would change to α-Cr phaseas temperature rises. The transformation temperature of σ→α-Cr phase increases as the addition of Re increases.The experimental results also showed that the γ’-Ni3Al→γ-Ni transformation temperature decreases with the addition of Re. In addition, the calculation results were compared with the experimental results and were found to be in reasonable agreement with the experimental observations from the aspect of the MCrAlY phase evolution. Some deviations of the calculation and experiment results about the precise phase-change temperatures, such as γ’-Ni3Al→γ-Ni and σ→α-Cr phase transformation temperatures, were observed, and the reason were discussed in the light of both limited availability of thermodynamic database and experimental problems.

Key words:  NiCoCrAlY      phase constituent      Re      thermodynamic calculation     
Received:  12 October 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00603     OR     https://www.ams.org.cn/EN/Y2013/V49/I3/330

[1] Guo M H.PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2005


(郭明虎. 中国科学院金属研究所博士学位论文, 沈阳, 2005)

[2] Mendis B G, Livi K J, Themker K J.Scr Mater, 2006; 55: 589

[3] Poza P, Grant P S.Surf Coat Technol, 2006; 201: 2887

[4] Song P, Lu J S, Zhao B L, Quadakkers W J.Mater Rev, 2007; 21(7): 59

(宋鹏, 陆建生, 赵宝禄, Quadakkers W J. 材料导报, 2007; 21(7): 59)

[5] Wang B, Gong J, Huang M D, Sun C, Huang R F, Wen L S.J Mater Prot, 2001; 34(4): 1

(王冰, 宫骏, 黄美东, 孙超, 黄荣芳, 闻立时. 材料保护, 2001; 34(4): 1)

[6] Li S S, Xiao C B, Li J P, Han Y F.J Aeronaut Mater, 2000; 20(3): 56

(李树索, 肖程波, 李建平, 韩雅芳. 航空材料学报, 2000; 20(3): 56)

[7] Sun C, Wang Q M, Tang Y J, Guan Q F, Gong J, Wen L S.Acta Metall Sin, 2005; 41: 1167

(孙超, 王启民, 唐永吉, 关庆丰, 宫骏, 闻立时. 金属学报, 2005; 41: 1167)

[8] Wang Q M, Wu Y N, Ke P L, Ji A L, Sun C, Huang R F, Wen L S.Acta Metall Sin, 2004; 40: 399

(王启民, 武颖娜, 柯培玲, 纪爱玲, 孙超, 黄荣芳, 闻立时. 金属学报, 2004; 40: 399)

[9] Xu C Z, Jiang S M, Ma J, Gong J, Sun C.Acta Metall Sin, 2009; 45: 964

(徐朝政, 姜肃猛, 马军, 宫骏, 孙超. 金属学报, 2009; 45: 964)

[10] Pint B A, Bestor M A, Haynes J A.Surf Coat Technol, 2011; 206: 1600

[11] Tawancy H M, Abbas N M, Bennett A.Surf Coat Technol, 1994; 68: 10

[12] Shi C X, Zhong Z Y.Acta Metall Sin, 2010; 46: 1281

(师昌绪, 仲增墉. 金属学报, 2010; 46: 1281)

[13] Shi C X, Zhong Z Y.Acta Metall Sin, 1997; 33: 1

(师昌绪, 仲增墉. 金属学报, 1997; 33: 1)

[14] Chen J Y, Zhao B, Feng Q, Cao L M, Sun Z Q.Acta Metall Sin, 2010; 46: 897

(陈晶阳, 赵宾, 冯强, 曹腊梅, 孙祖庆. 金属学报, 2010; 46: 897)

[15] Huang L, Sun X F, Guan H R, Hu Z Q.Surf Coat Technol, 2006; 201: 1421

[16] Liang J J, Wei H, Zhu Y L, Sun X F, Hu Z Q, Dargusch M S, Yao X.J Mater Sci, 2011; 46: 500

[17] Liang J J, Wei H, Zhu Y L, Sun X F, Hu Z Q, Dargusch M S, Yao X D.J Mater Sci Technol, 2011; 27: 408

[18] Phillips M A, Gleeson B.Oxid Met, 1998; 50: 399

[19] Czech N, Schmitz F, Stamm W.Surf Coat Technol, 1994; 68-69: 17

[20] Czech N, Schmitz F, Stamm W.Surf Coat Technol, 1995; 76-77: 28

[21] Tack U.PhD Dissertation,Technische Universitat Bergakademie Freiberg, Fachhochschule Osnabruck, 2004

[22] Hecht J, Goward G W.US Pat, 3928026, 1975

[23] Wang W Z.PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2008

(王文珍. 中国科学院金属研究所博士学位论文, 沈阳, 2008)

[24] Wei H.PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2004

(韦华. 中国科学院金属研究所博士学位论文, 沈阳, 2004)

[25] Huang W, Chang Y A.Mater Sci Eng, 1999; A259: 110

[26] Balanetskyy S, Grushko B.J Alloys Compd, 2008; 457: 348
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[3] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[5] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[6] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[7] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[8] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[9] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[10] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[11] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[12] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[13] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[14] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[15] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
No Suggested Reading articles found!