Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (3): 311-319    DOI: 10.3724/SP.J.1037.2012.00549
Current Issue | Archive | Adv Search |
MICROSTRUCTURE EVOLUTION OF DIRECTIONALLY SOLIDIFIED Al-12%Ni HYPEREUTECTIC ALLOY
PENG Peng, LI Xinzhong, LIU Dongmei, SU Yanqing, GUO Jingjie, FU Hengzhi
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001
Cite this article: 

PENG Peng, LI Xinzhong, LIU Dongmei, SU Yanqing, GUO Jingjie, FU Hengzhi. MICROSTRUCTURE EVOLUTION OF DIRECTIONALLY SOLIDIFIED Al-12%Ni HYPEREUTECTIC ALLOY. Acta Metall Sin, 2013, 49(3): 311-319.

Download:  PDF(1251KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Al-12%Ni (mass fraction) hypereutectic alloy from pure Ni and Al (99.9%) was induction melted and directionally solidified at constant growth rates ranging from 1 μm/s to 100 μm/s and abrupt change of growth rate were carried out in a Bridgman-type furnace. After solidification, the samples were quickly quenched into liquid Ga-In-Sn alloy to preserve the microstructure. The microstructures of the samples were observed using OM and SEM. It was indicated that at a growth rate of 1 μm/s, after experiencing a certain growth distance, the primary Al3Ni phase disappeared and the coupled growth of eutectic could be obtained. The morphology of Al3Ni phase was faceted when it was the leading phase at growth rates from 2 μm/s to 100 μm/s. The result of experiments with abrupt change of growth rate indicate that the initial microstructure before abrupt change of growth rate determine the microstructure after abrupt change of growth rate. Only if there existed no coarse primary Al3Ni phase before abrupt change of growth rate could entirely coupled eutectic structure be obtained at relatively higher growth rates. After abrupt change of growth rate, the growth of primary Al3Ni phase was suppressed and the coupled eutectic could grow continuously without any coarse primary phases. The strength and plasticity could be improved effectively through directional solidification.Besides, the elongation of Al-12%Ni alloy could be greatly improved by the abrupt change of growth rate during directional solidification.

Key words:  eutectic alloy      directional solidification      microstructure evolution      solidification mechanism     
Received:  14 September 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00549     OR     https://www.ams.org.cn/EN/Y2013/V49/I3/311

[1] Shankar S, Riddle Y W, Makhlouf M M.Acta Mater, 2004; 52: 4447


[2] Kurz W, Fisher D J.Int Mater Rev, 1979; 5: 177

[3] Kurz W, Fisher D J.Fundamental of Solidification. 6th Ed., Switzerland: Trans Tech Publication, 1998: 180

[4] Qu S Y, Wang R M, Han Y F.Mater Rev, 2002; 16(4): 31

(曲士昱, 王荣明, 韩雅芳. 材料导报, 2002; 16(4): 31)

[5] Gao W, Li Z W, Wu Z, Li S A, He Y D.Intermetallics, 2002; 10: 263

[6] Meng J, Jia C C, He Q.J Alloy Compds, 2006; 421: 200

[7] Ren Z M, Li X, Wang H.Mater Lett, 2004; 58: 3405

[8] Zheng L L, Larson D J, Zhang H.J Cryst Growth, 2000; 209: 110

[9] Li S M, Song Y P, Ma B L, Tang L, Fu H Z.Mater Sci Eng, 2008; A475: 117

[10] Li S M, Quan Q R, Li X L, Fu H Z.J Cryst Growth, 2011; 314: 279

[11] Li S M, Ma B L, Li X L, Liu L, Fu H Z.Sci China E, 2005; 35: 479

(李双明, 马伯乐, 李晓历, 刘林, 傅恒志. 中国科学 E辑, 2005; 35: 479)

[12] Li S M, Jiang B L, Ma B L, Liu L, Fu H Z.J Aero Mater, 2005; 26(3): 35

(李双明, 蒋冰轮, 马伯乐, 刘林, 傅恒志. 航空材料学报, 2005; 26(3): 35)

[13] Tang L, Ai T T, Feng X M, Li S M.Cast Forg Weld, 2009; 38(1): 19

(唐玲, 艾桃桃, 冯小明, 李双明. 金属铸锻焊技术, 2009; 38(1): 19)

[14] Li S M, Song Y P, Ma B L, Tang L, Fu H Z.Mater Sci Eng, 2008; A475: 117

[15] Li S M, Quan Q R, Li X L, Fu H Z.J Cryst Growth, 2011; 314: 279

[16] Liu D M, Li X Z, Su Y Q, Luo L S, Guo J J, Fu H Z.Intermetallics, 2012; 26: 131

[17] Jones H.Mater Sci Eng, 2005; A413-414: 165

[18] Mertinger V, Szabo G, Barczy P, Kovacs A, Czel G.Mater Sci Forum, 1996; 215-216: 331

[19] Juarez-Hernandez A, Jones H.Scr Mater, 1998; 38: 729

[20] Nguyen Thi H, Drevet B, Debierre J M, Camel D, Dabo Y, Billia B.J Cryst Growth, 2003; 253: 539

[21] Burden M H, Hunt J D.J Cryst Growth, 1974; 22: 109

[22] Jackson K A.J Cryst Growth, 1968; 3-4: 507

[23] Liu D M.PhD Dissertation, Harbin Institute of Technology, 2012

(刘冬梅. 哈尔滨工业大学博士论文, 2012)

[24] Tiller W A, Jackson K A, Rutter J W, Chalmers B.Acta Metall, 1953; 1: 428

[25] Smith V G, Tiller W A, Rutter J W.J Phys, 1955; 33: 723

[26] Hu H Q.Fundamentals of Alloy Solidification. Beijing: China Machine Press, 1991: 251

(胡汉起. 金属凝固原理. 北京: 机械工业出版社, 1991: 251)
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[5] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[6] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[7] ZHANG Lili, JI Zongwei, ZHAO Jiuzhou, HE Jie, JIANG Hongxiang. Key Factors Influencing Eutectic Si Modification in Al-Si Hypoeutectic Alloy by Trace La[J]. 金属学报, 2023, 59(11): 1541-1546.
[8] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
[9] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[10] FENG Di, ZHU Tian, ZANG Qianhao, LEE Yunsoo, FAN Xi, ZHANG Hao. Solution Behavior of Spray-Formed Hypereutectic AlSiCuMg Alloy[J]. 金属学报, 2022, 58(9): 1129-1140.
[11] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[12] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[13] MA Minjing, QU Yinhu, WANG Zhe, WANG Jun, DU Dan. Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials[J]. 金属学报, 2022, 58(10): 1305-1315.
[14] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[15] XU Jinghui, LI Longfei, LIU Xingang, LI Hui, FENG Qiang. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. 金属学报, 2021, 57(2): 205-214.
No Suggested Reading articles found!